These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 12794086)
61. Group 13 HOX proteins interact with the MH2 domain of R-Smads and modulate Smad transcriptional activation functions independent of HOX DNA-binding capability. Williams TM; Williams ME; Heaton JH; Gelehrter TD; Innis JW Nucleic Acids Res; 2005; 33(14):4475-84. PubMed ID: 16087734 [TBL] [Abstract][Full Text] [Related]
62. Functional conservation of Schistosoma mansoni Smads in TGF-beta signaling. Beall MJ; McGonigle S; Pearce EJ Mol Biochem Parasitol; 2000 Nov; 111(1):131-42. PubMed ID: 11087923 [TBL] [Abstract][Full Text] [Related]
63. Characterization of functional domains within Smad4/DPC4. de Caestecker MP; Hemmati P; Larisch-Bloch S; Ajmera R; Roberts AB; Lechleider RJ J Biol Chem; 1997 May; 272(21):13690-6. PubMed ID: 9153220 [TBL] [Abstract][Full Text] [Related]
64. Direct interaction of Ski with either Smad3 or Smad4 is necessary and sufficient for Ski-mediated repression of transforming growth factor-beta signaling. Ueki N; Hayman MJ J Biol Chem; 2003 Aug; 278(35):32489-92. PubMed ID: 12857746 [TBL] [Abstract][Full Text] [Related]
65. Two short segments of Smad3 are important for specific interaction of Smad3 with c-Ski and SnoN. Mizuide M; Hara T; Furuya T; Takeda M; Kusanagi K; Inada Y; Mori M; Imamura T; Miyazawa K; Miyazono K J Biol Chem; 2003 Jan; 278(1):531-6. PubMed ID: 12426322 [TBL] [Abstract][Full Text] [Related]
66. Human Smad3 and Smad4 are sequence-specific transcription activators. Zawel L; Dai JL; Buckhaults P; Zhou S; Kinzler KW; Vogelstein B; Kern SE Mol Cell; 1998 Mar; 1(4):611-7. PubMed ID: 9660945 [TBL] [Abstract][Full Text] [Related]
67. Transforming growth factor-beta-induced transcription of the Alzheimer beta-amyloid precursor protein gene involves interaction between the CTCF-complex and Smads. Burton T; Liang B; Dibrov A; Amara F Biochem Biophys Res Commun; 2002 Jul; 295(3):713-23. PubMed ID: 12099698 [TBL] [Abstract][Full Text] [Related]
68. TLP, a novel modulator of TGF-beta signaling, has opposite effects on Smad2- and Smad3-dependent signaling. Felici A; Wurthner JU; Parks WT; Giam LR; Reiss M; Karpova TS; McNally JG; Roberts AB EMBO J; 2003 Sep; 22(17):4465-77. PubMed ID: 12941698 [TBL] [Abstract][Full Text] [Related]
69. Intracellular signaling of the TGF-beta superfamily by Smad proteins. Kawabata M; Imamura T; Inoue H; Hanai J; Nishihara A; Hanyu A; Takase M; Ishidou Y; Udagawa Y; Oeda E; Goto D; Yagi K; Kato M; Miyazono K Ann N Y Acad Sci; 1999; 886():73-82. PubMed ID: 10667205 [TBL] [Abstract][Full Text] [Related]
70. Molecular interaction between Smurf1 WW2 domain and PPXY motifs of Smad1, Smad5, and Smad6--modeling and analysis. Sangadala S; Metpally RP; Reddy BV J Biomol Struct Dyn; 2007 Aug; 25(1):11-23. PubMed ID: 17676934 [TBL] [Abstract][Full Text] [Related]
71. Region between alpha-helices 3 and 4 of the mad homology 2 domain of Smad4: functional roles in oligomer formation and transcriptional activation. Tada K; Inoue H; Ebisawa T; Makuuchi M; Kawabata M; Imamura T; Miyazono K Genes Cells; 1999 Dec; 4(12):731-41. PubMed ID: 10620018 [TBL] [Abstract][Full Text] [Related]
72. Tenascin-C upregulation by transforming growth factor-beta in human dermal fibroblasts involves Smad3, Sp1, and Ets1. Jinnin M; Ihn H; Asano Y; Yamane K; Trojanowska M; Tamaki K Oncogene; 2004 Mar; 23(9):1656-67. PubMed ID: 15001984 [TBL] [Abstract][Full Text] [Related]
73. SUMO-1/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4. Lin X; Liang M; Liang YY; Brunicardi FC; Feng XH J Biol Chem; 2003 Aug; 278(33):31043-8. PubMed ID: 12813045 [TBL] [Abstract][Full Text] [Related]
74. TGF-beta activated Smad signalling leads to a Smad3-mediated down-regulation of DSPP in an odontoblast cell line. He WX; Niu ZY; Zhao SL; Jin WL; Gao J; Smith AJ Arch Oral Biol; 2004 Nov; 49(11):911-8. PubMed ID: 15353247 [TBL] [Abstract][Full Text] [Related]
75. Transforming growth factor-beta-mediated signaling via the p38 MAP kinase pathway activates Smad-dependent transcription through SUMO-1 modification of Smad4. Ohshima T; Shimotohno K J Biol Chem; 2003 Dec; 278(51):50833-42. PubMed ID: 14514699 [TBL] [Abstract][Full Text] [Related]
76. Alpha-helix 2 in the amino-terminal mad homology 1 domain is responsible for specific DNA binding of Smad3. Kusanagi K; Kawabata M; Mishima HK; Miyazono K J Biol Chem; 2001 Jul; 276(30):28155-63. PubMed ID: 11382774 [TBL] [Abstract][Full Text] [Related]
77. Differential modulation of androgen receptor-mediated transactivation by Smad3 and tumor suppressor Smad4. Kang HY; Huang KE; Chang SY; Ma WL; Lin WJ; Chang C J Biol Chem; 2002 Nov; 277(46):43749-56. PubMed ID: 12226080 [TBL] [Abstract][Full Text] [Related]
78. Characterization of a unique motif in LIM mineralization protein-1 that interacts with jun activation-domain-binding protein 1. Sangadala S; Yoshioka K; Enyo Y; Liu Y; Titus L; Boden SD Mol Cell Biochem; 2014 Jan; 385(1-2):145-57. PubMed ID: 24078030 [TBL] [Abstract][Full Text] [Related]
79. The four and a half LIM-only protein 2 (FHL2) activates transforming growth factor β (TGF-β) signaling by regulating ubiquitination of the E3 ligase Arkadia. Xia T; Lévy L; Levillayer F; Jia B; Li G; Neuveut C; Buendia MA; Lan K; Wei Y J Biol Chem; 2013 Jan; 288(3):1785-94. PubMed ID: 23212909 [TBL] [Abstract][Full Text] [Related]
80. The Drosophila gene Medea demonstrates the requirement for different classes of Smads in dpp signaling. Das P; Maduzia LL; Wang H; Finelli AL; Cho SH; Smith MM; Padgett RW Development; 1998 Apr; 125(8):1519-28. PubMed ID: 9502733 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]