These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 12794267)

  • 1. Sample preparation and imaging of erythrocyte cytoskeleton with the atomic force microscopy.
    Liu F; Burgess J; Mizukami H; Ostafin A
    Cell Biochem Biophys; 2003; 38(3):251-70. PubMed ID: 12794267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic force microscopy observation of peroxynitrite-induced erythrocyte cytoskeleton reorganization.
    Starodubtseva MN; Kuznetsova TG; Chizhik SA; Yegorenkov NI
    Micron; 2007; 38(8):782-6. PubMed ID: 17693091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging Plasmodium falciparum-infected ghost and parasite by atomic force microscopy.
    Garcia CR; Takeuschi M; Yoshioka K; Miyamoto H
    J Struct Biol; 1997 Jul; 119(2):92-8. PubMed ID: 9245748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forced extension of delipidated red blood cell cytoskeleton with little indication of spectrin unfolding.
    Afrin R; Nakaji M; Sekiguchi H; Lee D; Kishimoto K; Ikai A
    Cytoskeleton (Hoboken); 2012 Feb; 69(2):101-12. PubMed ID: 22213694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the erythrocyte membrane skeleton as observed by atomic force microscopy.
    Takeuchi M; Miyamoto H; Sako Y; Komizu H; Kusumi A
    Biophys J; 1998 May; 74(5):2171-83. PubMed ID: 9591644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topological features of erythrocytes in thalassemic patients: quantitative characterization by scanning electron and atomic force microscopy.
    Mukherjee R; Chaudhury K; Chakraborty C
    Anal Quant Cytopathol Histpathol; 2014 Apr; 36(2):91-9. PubMed ID: 24902361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Affinity imaging of red blood cells using an atomic force microscope.
    Grandbois M; Dettmann W; Benoit M; Gaub HE
    J Histochem Cytochem; 2000 May; 48(5):719-24. PubMed ID: 10769056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale Surface Characterization of Human Erythrocytes by Atomic Force Microscopy: A Critical Review.
    Mukherjee R; Saha M; Routray A; Chakraborty C
    IEEE Trans Nanobioscience; 2015 Sep; 14(6):625-33. PubMed ID: 25935044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural analysis of red blood cell membrane with an atomic force microscope.
    Yamashina S; Katsumata O
    J Electron Microsc (Tokyo); 2000; 49(3):445-51. PubMed ID: 11108033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructure of the human erythrocyte cytoskeleton and its attachment to the membrane.
    Ursitti JA; Pumplin DW; Wade JB; Bloch RJ
    Cell Motil Cytoskeleton; 1991; 19(4):227-43. PubMed ID: 1934084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of the erythrocyte deformability using atomic force microscopy: correlation study of the erythrocyte deformability with atomic force microscopy and hemorheology.
    Chen X; Feng L; Jin H; Feng S; Yu Y
    Clin Hemorheol Microcirc; 2009; 43(3):243-51. PubMed ID: 19847058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging morphological details and pathological differences of red blood cells using tapping-mode AFM.
    Kamruzzahan AS; Kienberger F; Stroh CM; Berg J; Huss R; Ebner A; Zhu R; Rankl C; Gruber HJ; Hinterdorfer P
    Biol Chem; 2004 Oct; 385(10):955-60. PubMed ID: 15551870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-dependent human erythrocyte cytoskeleton stability analysis through atomic force microscopy.
    Liu F; Mizukami H; Sarnaik S; Ostafin A
    J Struct Biol; 2005 May; 150(2):200-10. PubMed ID: 15866743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ultrastructural study of the cytoplasmic aspects of erythrocyte membranes by a quick-freezing and deep-etching method.
    Ohno S
    J Anat; 1992 Apr; 180 ( Pt 2)(Pt 2):315-20. PubMed ID: 1506286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adhesively-tensed cell membranes: lysis kinetics and atomic force microscopy probing.
    Hategan A; Law R; Kahn S; Discher DE
    Biophys J; 2003 Oct; 85(4):2746-59. PubMed ID: 14507737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring of glass derivatization with pulsed force mode atomic force microscopy.
    Ebner A; Kienberger F; Stroh CM; Gruber HJ; Hinterdorfer P
    Microsc Res Tech; 2004 Nov; 65(4-5):246-51. PubMed ID: 15630686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging live bacteria at the nanoscale: comparison of immobilisation strategies.
    Benn G; Pyne ALB; Ryadnov MG; Hoogenboom BW
    Analyst; 2019 Nov; 144(23):6944-6952. PubMed ID: 31620716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging DNA molecules on mica surface by atomic force microscopy in air and in liquid.
    Liu Z; Li Z; Zhou H; Wei G; Song Y; Wang L
    Microsc Res Tech; 2005 Mar; 66(4):179-85. PubMed ID: 15889427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies and results of atomic force microscopy in the study of cellular adhesion.
    Simon A; Durrieu MC
    Micron; 2006; 37(1):1-13. PubMed ID: 16171998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane skeleton in fresh unfixed erythrocytes as revealed by a rapid-freezing and deep-etching method.
    Ohno S; Terada N; Fujii Y; Ueda H
    J Anat; 1994 Oct; 185 ( Pt 2)(Pt 2):415-20. PubMed ID: 7961147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.