These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 1279510)
21. Effect of sodium benzoate and sodium phenylacetate on brain serotonin turnover in the ornithine transcarbamylase-deficient sparse-fur mouse. Batshaw ML; Hyman SL; Coyle JT; Robinson MB; Qureshi IA; Mellits ED; Quaskey S Pediatr Res; 1988 Apr; 23(4):368-74. PubMed ID: 3374991 [TBL] [Abstract][Full Text] [Related]
22. Hyperammonemia increases GABAergic tone in the cerebellum but decreases it in the rat cortex. Cauli O; Mansouri MT; Agusti A; Felipo V Gastroenterology; 2009 Apr; 136(4):1359-67, e1-2. PubMed ID: 19245864 [TBL] [Abstract][Full Text] [Related]
23. Effects of systemic and central nervous system localized inflammation on the contributions of metabolic precursors to the L-kynurenine and quinolinic acid pools in brain. Kita T; Morrison PF; Heyes MP; Markey SP J Neurochem; 2002 Jul; 82(2):258-68. PubMed ID: 12124427 [TBL] [Abstract][Full Text] [Related]
24. L-ornithine-L-aspartate lowers plasma and cerebrospinal fluid ammonia and prevents brain edema in rats with acute liver failure. Rose C; Michalak A; Rao KV; Quack G; Kircheis G; Butterworth RF Hepatology; 1999 Sep; 30(3):636-40. PubMed ID: 10462368 [TBL] [Abstract][Full Text] [Related]
25. Indomethacin prevents the development of experimental ammonia-induced brain edema in rats after portacaval anastomosis. Chung C; Gottstein J; Blei AT Hepatology; 2001 Aug; 34(2):249-54. PubMed ID: 11481608 [TBL] [Abstract][Full Text] [Related]
26. Content of quinolinic acid and of other tryptophan metabolites increases in brain regions of rats used as experimental models of hepatic encephalopathy. Moroni F; Lombardi G; Carlà V; Pellegrini D; Carassale GL; Cortesini C J Neurochem; 1986 Mar; 46(3):869-74. PubMed ID: 2419500 [TBL] [Abstract][Full Text] [Related]
27. Development of an experimental rat model of hyperammonemic encephalopathy and evaluation of the effects of rifaximin. Tamaoki S; Suzuki H; Okada M; Fukui N; Isobe M; Saito T Eur J Pharmacol; 2016 May; 779():168-76. PubMed ID: 26980242 [TBL] [Abstract][Full Text] [Related]
28. Hyperammonaemia causes many of the changes found after portacaval shunting. Jessy J; Mans AM; DeJoseph MR; Hawkins RA Biochem J; 1990 Dec; 272(2):311-7. PubMed ID: 1702623 [TBL] [Abstract][Full Text] [Related]
29. Hyperammonemia in the ICU. Clay AS; Hainline BE Chest; 2007 Oct; 132(4):1368-78. PubMed ID: 17934124 [TBL] [Abstract][Full Text] [Related]
30. Brain extracellular quinolinic acid in chronic experimental hepatic encephalopathy as assessed by in vivo microdialysis: acute effects of L-tryptophan. Bergqvist PB; Heyes MP; Apelqvist G; Butterworth RF; Bengtsson F Neuropsychopharmacology; 1996 Oct; 15(4):382-9. PubMed ID: 8887992 [TBL] [Abstract][Full Text] [Related]
31. Brain quinolinic acid in chronic experimental hepatic encephalopathy: effects of an exogenous ammonium acetate challenge. Bergqvist PB; Heyes MP; Bugge M; Bengtsson F J Neurochem; 1995 Nov; 65(5):2235-40. PubMed ID: 7595512 [TBL] [Abstract][Full Text] [Related]
32. Identification and expression of alpha cDNA encoding human 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD): a key enzyme for the tryptophan-niacine pathway and quinolinate hypothesis. Fukuoka S; Ishiguro K; Tanabe A; Egashira Y; Sanada H; Fukuwatari T; Shibata K Adv Exp Med Biol; 2003; 527():443-53. PubMed ID: 15206762 [TBL] [Abstract][Full Text] [Related]
33. In vivo 31P NMR spectroscopy of energy rich phosphates in the brain of the hyperammonemic rat. Friolet R; Colombo JP; Lazeyras F; Aue WP; Kretschmer R; Zimmermann A; Bachmann C Biochem Biophys Res Commun; 1989 Mar; 159(2):815-20. PubMed ID: 2930544 [TBL] [Abstract][Full Text] [Related]
34. The relationship between plasma and brain quinolinic acid levels and the severity of hepatic encephalopathy in animal models of fulminant hepatic failure. Basile AS; Saito K; Li Y; Heyes MP J Neurochem; 1995 Jun; 64(6):2607-14. PubMed ID: 7760040 [TBL] [Abstract][Full Text] [Related]
35. Increase in the content of quinolinic acid in cerebrospinal fluid and frontal cortex of patients with hepatic failure. Moroni F; Lombardi G; Carlà V; Lal S; Etienne P; Nair NP J Neurochem; 1986 Dec; 47(6):1667-71. PubMed ID: 2430055 [TBL] [Abstract][Full Text] [Related]
36. L-ornithine vs. L-ornithine-L-aspartate as a treatment for hyperammonemia-induced encephalopathy in rats. Vogels BA; Karlsen OT; Mass MA; Boveé WM; Chamuleau RA J Hepatol; 1997 Jan; 26(1):174-82. PubMed ID: 9148009 [TBL] [Abstract][Full Text] [Related]
37. Identification and expression of a cDNA encoding human alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD). A key enzyme for the tryptophan-niacine pathway and "quinolinate hypothesis". Fukuoka S; Ishiguro K; Yanagihara K; Tanabe A; Egashira Y; Sanada H; Shibata K J Biol Chem; 2002 Sep; 277(38):35162-7. PubMed ID: 12140278 [TBL] [Abstract][Full Text] [Related]
38. Changes in brain metabolism during hyperammonemia and acute liver failure: results of a comparative 1H-NMR spectroscopy and biochemical investigation. Bosman DK; Deutz NE; De Graaf AA; vd Hulst RW; Van Eijk HM; Bovée WM; Maas MA; Jörning GG; Chamuleau RA Hepatology; 1990 Aug; 12(2):281-90. PubMed ID: 1975248 [TBL] [Abstract][Full Text] [Related]
39. Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat. Luo J; Wang T; Liang S; Hu X; Li W; Jin F Sci China Life Sci; 2014 Mar; 57(3):327-335. PubMed ID: 24554471 [TBL] [Abstract][Full Text] [Related]
40. Brain uptake of tryptophan in urease-injected hyperammonemic rats after treatment with benzoate or hippurate. Bachmann C; Lüthi H; Gradwohl M; Colombo JP Biochem Med Metab Biol; 1986 Oct; 36(2):214-9. PubMed ID: 3778687 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]