These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 1279510)
41. Mechanisms of hyperammonemia. Bachmann C Clin Chem Lab Med; 2002 Jul; 40(7):653-62. PubMed ID: 12241009 [TBL] [Abstract][Full Text] [Related]
42. Chronic hyperammonemia prevents changes in brain energy and ammonia metabolites induced by acute ammonium intoxication. Kosenko E; Kaminsky YG; Felipo V; Miñana MD; Grisolía S Biochim Biophys Acta; 1993 Jan; 1180(3):321-6. PubMed ID: 8422438 [TBL] [Abstract][Full Text] [Related]
43. Quinolinate-induced injury is enhanced in developing rat brain. Trescher WH; McDonald JW; Johnston MV Brain Res Dev Brain Res; 1994 Dec; 83(2):224-32. PubMed ID: 7697883 [TBL] [Abstract][Full Text] [Related]
44. Effect of urease-induced hyperammonemia on metabolism of guanidino compounds. Meert KL; Deshmukh DR; Marescau B; Ghole VS; De Deyn PP; Sarnaik AP Biochem Med Metab Biol; 1993 Feb; 49(1):51-6. PubMed ID: 8439450 [TBL] [Abstract][Full Text] [Related]
45. Guanosine Exerts Neuroprotective Effect in an Experimental Model of Acute Ammonia Intoxication. Cittolin-Santos GF; de Assis AM; Guazzelli PA; Paniz LG; da Silva JS; Calcagnotto ME; Hansel G; Zenki KC; Kalinine E; Duarte MM; Souza DO Mol Neurobiol; 2017 Jul; 54(5):3137-3148. PubMed ID: 27052954 [TBL] [Abstract][Full Text] [Related]
46. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis. Kumar A; Davuluri G; Silva RNE; Engelen MPKJ; Ten Have GAM; Prayson R; Deutz NEP; Dasarathy S Hepatology; 2017 Jun; 65(6):2045-2058. PubMed ID: 28195332 [TBL] [Abstract][Full Text] [Related]
47. The effect of acute and repeated hyperammonemia on gamma-glutamyl transpeptidase in homogenates and capillaries of various rat brain regions. Hilgier W; Albrecht J; Lisy V; Stastny F Mol Chem Neuropathol; 1990; 13(1-2):47-56. PubMed ID: 1982779 [TBL] [Abstract][Full Text] [Related]
48. Plasma and brain levels of oxindole in experimental chronic hepatic encephalopathy: effects of systemic ammonium acetate and L-tryptophan. Bergqvist PB; Carpenedo R; Apelqvist G; Moroni F; Bengtsson F Pharmacol Toxicol; 1999 Sep; 85(3):138-43. PubMed ID: 10522754 [TBL] [Abstract][Full Text] [Related]
50. Changes in brain ECF amino acids in rats with experimentally induced hyperammonemia. Suzuki K; Matsuo N; Moriguchi T; Takeyama N; Kitazawa Y; Tanaka T Metab Brain Dis; 1992 Jun; 7(2):63-75. PubMed ID: 1528171 [TBL] [Abstract][Full Text] [Related]
51. Indoleamine metabolism in rat brain studied through measurements of tryptophan, 5-hydroxyindoleacetic acid, and indoleacetic acid in cerebrospinal fluid. Young SN; Anderson GM; Purdy WC J Neurochem; 1980 Feb; 34(2):309-15. PubMed ID: 6157779 [No Abstract] [Full Text] [Related]
52. Hyperammonemia in children: on the crossroad of different disorders. Paprocka J; Jamroz E Neurologist; 2012 Sep; 18(5):261-5. PubMed ID: 22931730 [TBL] [Abstract][Full Text] [Related]
53. Is quinolinic acid involved in the pathogenesis of hepatic encephalopathy? Bergqvist PB; Heyes MP; Bengtsson F Adv Exp Med Biol; 1996; 398():397-405. PubMed ID: 8906295 [No Abstract] [Full Text] [Related]
54. Is quinolinic acid an endogenous excitotoxin in alcohol withdrawal? Morgan PF Med Hypotheses; 1991 Oct; 36(2):118-21. PubMed ID: 1664036 [TBL] [Abstract][Full Text] [Related]
55. Effect of ammonium acetate-induced hyperammonemia on metabolism of guanidino compounds. Meert KL; Deshmukh DR; Marescau B; De Deyn PP; Sarnaik AP Biochem Med Metab Biol; 1991 Oct; 46(2):208-14. PubMed ID: 1782011 [TBL] [Abstract][Full Text] [Related]
56. Tolerance of neonatal rat brain to acute hyperammonemia. García MV; López-Mediavilla C; Juanes de la Peña MC; Medina JM Brain Res; 2003 May; 973(1):31-8. PubMed ID: 12729950 [TBL] [Abstract][Full Text] [Related]
57. Evidence for the role of ammonia in the intracerebral transfer and metabolism of tryptophan. Grippon P; Le Poncin Lafitte M; Boschat M; Wang S; Faure G; Dutertre D; Opolon P Hepatology; 1986; 6(4):682-6. PubMed ID: 2426170 [TBL] [Abstract][Full Text] [Related]
58. The two catalytic components of the 2-oxoglutarate dehydrogenase complex in rat cerebral synaptic and nonsynaptic mitochondria: comparison of the response to in vitro treatment with ammonia, hyperammonemia, and hepatic encephalopathy. Faff-Michalak L; Albrecht J Neurochem Res; 1993 Feb; 18(2):119-23. PubMed ID: 8474555 [TBL] [Abstract][Full Text] [Related]
59. NAD biosynthesis: identification of the tryptophan to quinolinate pathway in bacteria. Kurnasov O; Goral V; Colabroy K; Gerdes S; Anantha S; Osterman A; Begley TP Chem Biol; 2003 Dec; 10(12):1195-204. PubMed ID: 14700627 [TBL] [Abstract][Full Text] [Related]
60. High ammonia levels in brain induce tubulin in cerebrum but not in cerebellum. Miñana MD; Felipo V; Wallace R; Grisolía S J Neurochem; 1988 Dec; 51(6):1839-42. PubMed ID: 3183662 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]