These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 12795377)
1. A global analysis of protein expression profiles in Sinorhizobium meliloti: discovery of new genes for nodule occupancy and stress adaptation. Djordjevic MA; Chen HC; Natera S; Van Noorden G; Menzel C; Taylor S; Renard C; Geiger O; Weiller GF; Mol Plant Microbe Interact; 2003 Jun; 16(6):508-24. PubMed ID: 12795377 [TBL] [Abstract][Full Text] [Related]
2. Mutation in the ntrR gene, a member of the vap gene family, increases the symbiotic efficiency of Sinorhizobium meliloti. Oláh B; Kiss E; Györgypál Z; Borzi J; Cinege G; Csanádi G; Batut J; Kondorosi A; Dusha I Mol Plant Microbe Interact; 2001 Jul; 14(7):887-94. PubMed ID: 11437262 [TBL] [Abstract][Full Text] [Related]
3. The typA gene is required for stress adaptation as well as for symbiosis of Sinorhizobium meliloti 1021 with certain Medicago truncatula lines. Kiss E; Huguet T; Poinsot V; Batut J Mol Plant Microbe Interact; 2004 Mar; 17(3):235-44. PubMed ID: 15000390 [TBL] [Abstract][Full Text] [Related]
4. Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations. Barsch A; Tellström V; Patschkowski T; Küster H; Niehaus K Mol Plant Microbe Interact; 2006 Sep; 19(9):998-1013. PubMed ID: 16941904 [TBL] [Abstract][Full Text] [Related]
5. Disruption of a gene essential for sulfoquinovosyldiacylglycerol biosynthesis in Sinorhizobium meliloti has no detectable effect on root nodule symbiosis. Weissenmayer B; Geiger O; Benning C Mol Plant Microbe Interact; 2000 Jun; 13(6):666-72. PubMed ID: 10830266 [TBL] [Abstract][Full Text] [Related]
6. Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for the symbiosis with alfalfa but contribute to increased cell yields under phosphorus-limiting conditions of growth. López-Lara IM; Gao JL; Soto MJ; Solares-Pérez A; Weissenmayer B; Sohlenkamp C; Verroios GP; Thomas-Oates J; Geiger O Mol Plant Microbe Interact; 2005 Sep; 18(9):973-82. PubMed ID: 16167767 [TBL] [Abstract][Full Text] [Related]
7. Proteome analysis of the model microsymbiont Sinorhizobium meliloti: isolation and characterisation of novel proteins. Guerreiro N; Djordjevic MA; Rolfe BG Electrophoresis; 1999; 20(4-5):818-25. PubMed ID: 10344253 [TBL] [Abstract][Full Text] [Related]
11. Identification of new potential regulators of the Medicago truncatula-Sinorhizobium meliloti symbiosis using a large-scale suppression subtractive hybridization approach. Godiard L; Niebel A; Micheli F; Gouzy J; Ott T; Gamas P Mol Plant Microbe Interact; 2007 Mar; 20(3):321-32. PubMed ID: 17378435 [TBL] [Abstract][Full Text] [Related]
12. Effects of AiiA-mediated quorum quenching in Sinorhizobium meliloti on quorum-sensing signals, proteome patterns, and symbiotic interactions. Gao M; Chen H; Eberhard A; Gronquist MR; Robinson JB; Connolly M; Teplitski M; Rolfe BG; Bauer WD Mol Plant Microbe Interact; 2007 Jul; 20(7):843-56. PubMed ID: 17601171 [TBL] [Abstract][Full Text] [Related]
13. The LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression. Hoang HH; Becker A; González JE J Bacteriol; 2004 Aug; 186(16):5460-72. PubMed ID: 15292148 [TBL] [Abstract][Full Text] [Related]
14. Expression profiles of 22 novel molecular markers for organogenetic pathways acting in alfalfa nodule development. Jiménez-Zurdo JI; Frugier F; Crespi MD; Kondorosi A Mol Plant Microbe Interact; 2000 Jan; 13(1):96-106. PubMed ID: 10656590 [TBL] [Abstract][Full Text] [Related]
15. Identification of a hydroxyproline transport system in the legume endosymbiont Sinorhizobium meliloti. Maclean AM; White CE; Fowler JE; Finan TM Mol Plant Microbe Interact; 2009 Sep; 22(9):1116-27. PubMed ID: 19656046 [TBL] [Abstract][Full Text] [Related]
16. Glycine-rich proteins encoded by a nodule-specific gene family are implicated in different stages of symbiotic nodule development in Medicago spp. Kevei Z; Vinardell JM; Kiss GB; Kondorosi A; Kondorosi E Mol Plant Microbe Interact; 2002 Sep; 15(9):922-31. PubMed ID: 12236598 [TBL] [Abstract][Full Text] [Related]
17. Sinorhizobium meliloti metabolism in the root nodule: a proteomic perspective. Djordjevic MA Proteomics; 2004 Jul; 4(7):1859-72. PubMed ID: 15221743 [TBL] [Abstract][Full Text] [Related]
18. Sinorhizobium meliloti differentiation during symbiosis with alfalfa: a transcriptomic dissection. Capela D; Filipe C; Bobik C; Batut J; Bruand C Mol Plant Microbe Interact; 2006 Apr; 19(4):363-72. PubMed ID: 16610739 [TBL] [Abstract][Full Text] [Related]
19. Proteomic analysis of the cyanobacterium of the Azolla symbiosis: identity, adaptation, and NifH modification. Ekman M; Tollbäck P; Bergman B J Exp Bot; 2008; 59(5):1023-34. PubMed ID: 18065763 [TBL] [Abstract][Full Text] [Related]
20. BioS, a biotin-induced, stationary-phase, and possible LysR-type regulator in Sinorhizobium meliloti. Heinz EB; Phillips DA; Streit WR Mol Plant Microbe Interact; 1999 Sep; 12(9):803-12. PubMed ID: 10494632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]