These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 12795699)

  • 61. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na(+)/H(+) antiporter from rice.
    Fukuda A; Nakamura A; Tagiri A; Tanaka H; Miyao A; Hirochika H; Tanaka Y
    Plant Cell Physiol; 2004 Feb; 45(2):146-59. PubMed ID: 14988485
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family.
    Corratgé-Faillie C; Jabnoune M; Zimmermann S; Véry AA; Fizames C; Sentenac H
    Cell Mol Life Sci; 2010 Aug; 67(15):2511-32. PubMed ID: 20333436
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Novel p-type ATPases mediate high-affinity potassium or sodium uptake in fungi.
    Benito B; Garciadeblás B; Schreier P; Rodríguez-Navarro A
    Eukaryot Cell; 2004 Apr; 3(2):359-68. PubMed ID: 15075266
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A comparative gene analysis with rice identified orthologous group II HKT genes and their association with Na(+) concentration in bread wheat.
    Ariyarathna HA; Oldach KH; Francki MG
    BMC Plant Biol; 2016 Jan; 16():21. PubMed ID: 26786911
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Differentially expressed membrane transporters in rice roots may contribute to cultivar dependent salt tolerance.
    Senadheera P; Singh RK; Maathuis FJ
    J Exp Bot; 2009; 60(9):2553-63. PubMed ID: 19395386
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Plant HKT Channels: An Updated View on Structure, Function and Gene Regulation.
    Riedelsberger J; Miller JK; Valdebenito-Maturana B; Piñeros MA; González W; Dreyer I
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33672907
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cesium Uptake by Rice Roots Largely Depends Upon a Single Gene, HAK1, Which Encodes a Potassium Transporter.
    Rai H; Yokoyama S; Satoh-Nagasawa N; Furukawa J; Nomi T; Ito Y; Fujimura S; Takahashi H; Suzuki R; Yousra E; Goto A; Fuji S; Nakamura SI; Shinano T; Nagasawa N; Wabiko H; Hattori H
    Plant Cell Physiol; 2017 Sep; 58(9):1486-1493. PubMed ID: 28922748
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A Cation-Chloride Cotransporter Gene Is Required for Cell Elongation and Osmoregulation in Rice.
    Chen ZC; Yamaji N; Fujii-Kashino M; Ma JF
    Plant Physiol; 2016 May; 171(1):494-507. PubMed ID: 26983995
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Molecular analysis of the mechanism of potassium uptake through the TRK1 transporter of Saccharomyces cerevisiae.
    Haro R; Rodríguez-Navarro A
    Biochim Biophys Acta; 2002 Aug; 1564(1):114-22. PubMed ID: 12101003
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structural variations in wheat HKT1;5 underpin differences in Na
    Xu B; Waters S; Byrt CS; Plett D; Tyerman SD; Tester M; Munns R; Hrmova M; Gilliham M
    Cell Mol Life Sci; 2018 Mar; 75(6):1133-1144. PubMed ID: 29177534
    [TBL] [Abstract][Full Text] [Related]  

  • 71. HKT2;2/1, a K⁺-permeable transporter identified in a salt-tolerant rice cultivar through surveys of natural genetic polymorphism.
    Oomen RJ; Benito B; Sentenac H; Rodríguez-Navarro A; Talón M; Véry AA; Domingo C
    Plant J; 2012 Sep; 71(5):750-62. PubMed ID: 22530609
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Tissue-specific expression analysis of Na
    Neang S; Goto I; Skoulding NS; Cartagena JA; Kano-Nakata M; Yamauchi A; Mitsuya S
    BMC Plant Biol; 2020 Nov; 20(1):502. PubMed ID: 33143652
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Potassium transport systems in the moss Physcomitrella patens: pphak1 plants reveal the complexity of potassium uptake.
    Garciadeblas B; Barrero-Gil J; Benito B; Rodríguez-Navarro A
    Plant J; 2007 Dec; 52(6):1080-93. PubMed ID: 17916113
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Structural insights into the Oryza sativa cation transporters HKTs in salt tolerance.
    Gao R; Jia Y; Xu X; Fu P; Zhou J; Yang G
    J Integr Plant Biol; 2024 Apr; 66(4):700-708. PubMed ID: 38409933
    [TBL] [Abstract][Full Text] [Related]  

  • 75. High-affinity potassium and sodium transport systems in plants.
    Rodríguez-Navarro A; Rubio F
    J Exp Bot; 2006; 57(5):1149-60. PubMed ID: 16449373
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels.
    Yang T; Zhang S; Hu Y; Wu F; Hu Q; Chen G; Cai J; Wu T; Moran N; Yu L; Xu G
    Plant Physiol; 2014 Oct; 166(2):945-59. PubMed ID: 25157029
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Metabolite profiling and gene expression of Na/K transporter analyses reveal mechanisms of the difference in salt tolerance between barley and rice.
    Fu L; Shen Q; Kuang L; Yu J; Wu D; Zhang G
    Plant Physiol Biochem; 2018 Sep; 130():248-257. PubMed ID: 30021179
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Potassium transporters in plants--involvement in K+ acquisition, redistribution and homeostasis.
    Gierth M; Mäser P
    FEBS Lett; 2007 May; 581(12):2348-56. PubMed ID: 17397836
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The ionic environment controls the contribution of the barley HvHAK1 transporter to potassium acquisition.
    Fulgenzi FR; Peralta ML; Mangano S; Danna CH; Vallejo AJ; Puigdomenech P; Santa-María GE
    Plant Physiol; 2008 May; 147(1):252-62. PubMed ID: 18359846
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.).
    P G K; Kuruvilla S; Mathew MK
    Plant Physiol Biochem; 2015 Dec; 97():165-74. PubMed ID: 26476396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.