These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 12796493)
1. GroEL stability and function. Contribution of the ionic interactions at the inter-ring contact sites. Sot B; Bañuelos S; Valpuesta JM; Muga A J Biol Chem; 2003 Aug; 278(34):32083-90. PubMed ID: 12796493 [TBL] [Abstract][Full Text] [Related]
2. Ionic interactions at both inter-ring contact sites of GroEL are involved in transmission of the allosteric signal: a time-resolved infrared difference study. Sot B; von Germar F; Mäntele W; Valpuesta JM; Taneva SG; Muga A Protein Sci; 2005 Sep; 14(9):2267-74. PubMed ID: 16081650 [TBL] [Abstract][Full Text] [Related]
3. Salt bridges at the inter-ring interface regulate the thermostat of GroEL. Sot B; Galán A; Valpuesta JM; Bertrand S; Muga A J Biol Chem; 2002 Sep; 277(37):34024-9. PubMed ID: 12110685 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of the temperature-sensitive and allosteric-defective chaperonin GroELE461K. Cabo-Bilbao A; Spinelli S; Sot B; Agirre J; Mechaly AE; Muga A; Guérin DM J Struct Biol; 2006 Sep; 155(3):482-92. PubMed ID: 16904907 [TBL] [Abstract][Full Text] [Related]
5. A kinetic analysis of the nucleotide-induced allosteric transitions in a single-ring mutant of GroEL. Poso D; Clarke AR; Burston SG J Mol Biol; 2004 May; 338(5):969-77. PubMed ID: 15111060 [TBL] [Abstract][Full Text] [Related]
6. A mutant chaperonin with rearranged inter-ring electrostatic contacts and temperature-sensitive dissociation. Sewell BT; Best RB; Chen S; Roseman AM; Farr GW; Horwich AL; Saibil HR Nat Struct Mol Biol; 2004 Nov; 11(11):1128-33. PubMed ID: 15475965 [TBL] [Abstract][Full Text] [Related]
7. A dynamic model of long-range conformational adaptations triggered by nucleotide binding in GroEL-GroES. Skjaerven L; Muga A; Reuter N; Martinez A Proteins; 2012 Oct; 80(10):2333-46. PubMed ID: 22576372 [TBL] [Abstract][Full Text] [Related]
8. Allostery wiring diagrams in the transitions that drive the GroEL reaction cycle. Tehver R; Chen J; Thirumalai D J Mol Biol; 2009 Mar; 387(2):390-406. PubMed ID: 19121324 [TBL] [Abstract][Full Text] [Related]
9. From minichaperone to GroEL 3: properties of an active single-ring mutant of GroEL. Chatellier J; Hill F; Foster NW; Goloubinoff P; Fersht AR J Mol Biol; 2000 Dec; 304(5):897-910. PubMed ID: 11124035 [TBL] [Abstract][Full Text] [Related]
10. Determination of the number of active GroES subunits in the fused heptamer GroES required for interactions with GroEL. Nojima T; Murayama S; Yoshida M; Motojima F J Biol Chem; 2008 Jun; 283(26):18385-92. PubMed ID: 18430731 [TBL] [Abstract][Full Text] [Related]
11. GroEL Ring Separation and Exchange in the Chaperonin Reaction. Yan X; Shi Q; Bracher A; Miličić G; Singh AK; Hartl FU; Hayer-Hartl M Cell; 2018 Jan; 172(3):605-617.e11. PubMed ID: 29336887 [TBL] [Abstract][Full Text] [Related]
12. Inter-ring communication allows the GroEL chaperonin complex to distinguish between different substrates. van Duijn E; Heck AJ; van der Vies SM Protein Sci; 2007 May; 16(5):956-65. PubMed ID: 17456746 [TBL] [Abstract][Full Text] [Related]
13. Gly192 at hinge 2 site in the chaperonin GroEL plays a pivotal role in the dynamic apical domain movement that leads to GroES binding and efficient encapsulation of substrate proteins. Machida K; Fujiwara R; Tanaka T; Sakane I; Hongo K; Mizobata T; Kawata Y Biochim Biophys Acta; 2009 Sep; 1794(9):1344-54. PubMed ID: 19130907 [TBL] [Abstract][Full Text] [Related]
14. Chaperonin-Assisted Protein Folding: Relative Population of Asymmetric and Symmetric GroEL:GroES Complexes. Haldar S; Gupta AJ; Yan X; Miličić G; Hartl FU; Hayer-Hartl M J Mol Biol; 2015 Jun; 427(12):2244-55. PubMed ID: 25912285 [TBL] [Abstract][Full Text] [Related]
15. Hydrophilic residues at the apical domain of GroEL contribute to GroES binding but attenuate polypeptide binding. Motojima F; Makio T; Aoki K; Makino Y; Kuwajima K; Yoshida M Biochem Biophys Res Commun; 2000 Jan; 267(3):842-9. PubMed ID: 10673379 [TBL] [Abstract][Full Text] [Related]
16. Effects of the inter-ring communication in GroEL structural and functional asymmetry. Llorca O; Pérez-Pérez J; Carrascosa JL; Galán A; Muga A; Valpuesta JM J Biol Chem; 1997 Dec; 272(52):32925-32. PubMed ID: 9407071 [TBL] [Abstract][Full Text] [Related]
17. Characterisation of mutations in GroES that allow GroEL to function as a single ring. Liu H; Kovács E; Lund PA FEBS Lett; 2009 Jul; 583(14):2365-71. PubMed ID: 19545569 [TBL] [Abstract][Full Text] [Related]
18. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Xu Z; Horwich AL; Sigler PB Nature; 1997 Aug; 388(6644):741-50. PubMed ID: 9285585 [TBL] [Abstract][Full Text] [Related]
19. Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system. Illingworth M; Salisbury J; Li W; Lin D; Chen L Biochem Biophys Res Commun; 2015 Oct; 466(1):15-20. PubMed ID: 26271593 [TBL] [Abstract][Full Text] [Related]
20. From minichaperone to GroEL 2: importance of avidity of the multisite ring structure. Chatellier J; Hill F; Fersht AR J Mol Biol; 2000 Dec; 304(5):883-96. PubMed ID: 11124034 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]