These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 12796515)
1. RNA recognition by designed peptide fusion creates "artificial" tRNA synthetase. Frugier M; Giege R; Schimmel P Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7471-5. PubMed ID: 12796515 [TBL] [Abstract][Full Text] [Related]
2. Domain-domain communication for tRNA aminoacylation: the importance of covalent connectivity. Zhang CM; Hou YM Biochemistry; 2005 May; 44(19):7240-9. PubMed ID: 15882062 [TBL] [Abstract][Full Text] [Related]
3. Aminoacylation of RNA minihelices: implications for tRNA synthetase structural design and evolution. Buechter DD; Schimmel P Crit Rev Biochem Mol Biol; 1993; 28(4):309-22. PubMed ID: 7691478 [TBL] [Abstract][Full Text] [Related]
4. Assembly of a catalytic unit for RNA microhelix aminoacylation using nonspecific RNA binding domains. Chihade JW; Schimmel P Proc Natl Acad Sci U S A; 1999 Oct; 96(22):12316-21. PubMed ID: 10535919 [TBL] [Abstract][Full Text] [Related]
5. C-terminal zinc-containing peptide required for RNA recognition by a class I tRNA synthetase. Glasfeld E; Landro JA; Schimmel P Biochemistry; 1996 Apr; 35(13):4139-45. PubMed ID: 8672449 [TBL] [Abstract][Full Text] [Related]
6. Domain-domain communication in aminoacyl-tRNA synthetases. Alexander RW; Schimmel P Prog Nucleic Acid Res Mol Biol; 2001; 69():317-49. PubMed ID: 11550797 [TBL] [Abstract][Full Text] [Related]
7. Mutational analysis of a leucine heptad repeat motif in a class I aminoacyl-tRNA synthetase. Ohannesian DW; Oh J; Hou YM Biochemistry; 1996 Nov; 35(45):14405-12. PubMed ID: 8916927 [TBL] [Abstract][Full Text] [Related]
8. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases. Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750 [TBL] [Abstract][Full Text] [Related]
9. An isolated class II aminoacyl-tRNA synthetase insertion domain is functional in amino acid editing. Wong FC; Beuning PJ; Silvers C; Musier-Forsyth K J Biol Chem; 2003 Dec; 278(52):52857-64. PubMed ID: 14530268 [TBL] [Abstract][Full Text] [Related]
10. Evidence that the 3' end of a tRNA binds to a site in the adenylate synthesis domain of an aminoacyl-tRNA synthetase. Hill K; Schimmel P Biochemistry; 1989 Mar; 28(6):2577-86. PubMed ID: 2543446 [TBL] [Abstract][Full Text] [Related]
11. Translocation within the acceptor helix of a major tRNA identity determinant. Lovato MA; Chihade JW; Schimmel P EMBO J; 2001 Sep; 20(17):4846-53. PubMed ID: 11532948 [TBL] [Abstract][Full Text] [Related]
12. Evidence for a conserved relationship between an acceptor stem and a tRNA for aminoacylation. Hou YM; Sterner T; Bhalla R RNA; 1995 Sep; 1(7):707-13. PubMed ID: 7585255 [TBL] [Abstract][Full Text] [Related]
16. Rules that govern tRNA identity in protein synthesis. McClain WH J Mol Biol; 1993 Nov; 234(2):257-80. PubMed ID: 8230212 [TBL] [Abstract][Full Text] [Related]
17. Acquisition of an insertion peptide for efficient aminoacylation by a halophile tRNA synthetase. Evilia C; Hou YM Biochemistry; 2006 Jun; 45(22):6835-45. PubMed ID: 16734420 [TBL] [Abstract][Full Text] [Related]
18. An aminoacyl-tRNA synthetase with a defunct editing site. Lue SW; Kelley SO Biochemistry; 2005 Mar; 44(8):3010-6. PubMed ID: 15723544 [TBL] [Abstract][Full Text] [Related]
19. RNA tetraloops as minimalist substrates for aminoacylation. Shi JP; Martinis SA; Schimmel P Biochemistry; 1992 Jun; 31(21):4931-6. PubMed ID: 1599917 [TBL] [Abstract][Full Text] [Related]
20. Minor groove recognition of the critical acceptor helix base pair by an appended module of a class II tRNA synthetase. Buechter DD; Schimmel P Biochemistry; 1995 May; 34(18):6014-9. PubMed ID: 7742303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]