These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 1279677)
1. A region of group I introns that contains universally conserved residues but is not essential for self-splicing. Williams KP; Fujimoto DN; Inoue T Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10400-4. PubMed ID: 1279677 [TBL] [Abstract][Full Text] [Related]
2. Self-splicing of the Tetrahymena group I ribozyme without conserved base-triples. Ikawa Y; Yoshioka W; Ohki Y; Shiraishi H; Inoue T Genes Cells; 2001 May; 6(5):411-20. PubMed ID: 11380619 [TBL] [Abstract][Full Text] [Related]
3. A tyrosyl-tRNA synthetase suppresses structural defects in the two major helical domains of the group I intron catalytic core. Myers CA; Wallweber GJ; Rennard R; Kemel Y; Caprara MG; Mohr G; Lambowitz AM J Mol Biol; 1996 Sep; 262(2):87-104. PubMed ID: 8831782 [TBL] [Abstract][Full Text] [Related]
4. A 3' splice site-binding sequence in the catalytic core of a group I intron. Burke JM; Esherick JS; Burfeind WR; King JL Nature; 1990 Mar; 344(6261):80-2. PubMed ID: 2406615 [TBL] [Abstract][Full Text] [Related]
5. In vitro genetic analysis of the hinge region between helical elements P5-P4-P6 and P7-P3-P8 in the sunY group I self-splicing intron. Green R; Szostak JW J Mol Biol; 1994 Jan; 235(1):140-55. PubMed ID: 7507168 [TBL] [Abstract][Full Text] [Related]
6. Deletion of nonconserved helices near the 3' end of the rRNA intron of Tetrahymena thermophila alters self-splicing but not core catalytic activity. Barfod ET; Cech TR Genes Dev; 1988 Jun; 2(6):652-63. PubMed ID: 3417146 [TBL] [Abstract][Full Text] [Related]
7. A tyrosyl-tRNA synthetase protein induces tertiary folding of the group I intron catalytic core. Caprara MG; Mohr G; Lambowitz AM J Mol Biol; 1996 Apr; 257(3):512-31. PubMed ID: 8648621 [TBL] [Abstract][Full Text] [Related]
8. Two universally conserved adenosines of the group I intron that are important for self-splicing but not for core catalytic activity. Williams KP; Fujimoto DN; Inoue T J Biochem; 1994 Jan; 115(1):126-30. PubMed ID: 8188618 [TBL] [Abstract][Full Text] [Related]
9. GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. Murphy FL; Cech TR J Mol Biol; 1994 Feb; 236(1):49-63. PubMed ID: 8107125 [TBL] [Abstract][Full Text] [Related]
10. Catalytic activity is retained in the Tetrahymena group I intron despite removal of the large extension of element P5. Joyce GF; van der Horst G; Inoue T Nucleic Acids Res; 1989 Oct; 17(19):7879-89. PubMed ID: 2477801 [TBL] [Abstract][Full Text] [Related]
11. Deletion of P9 and stem-loop structures downstream from the catalytic core affects both 5' and 3' splicing activities in a group-I intron. Caprara MG; Waring RB Gene; 1994 May; 143(1):29-37. PubMed ID: 8200535 [TBL] [Abstract][Full Text] [Related]
12. A tertiary interaction in the Tetrahymena intron contributes to selection of the 5' splice site. Downs WD; Cech TR Genes Dev; 1994 May; 8(10):1198-211. PubMed ID: 7926724 [TBL] [Abstract][Full Text] [Related]
13. Reconstitution of a group I intron self-splicing reaction with an activator RNA. van der Horst G; Christian A; Inoue T Proc Natl Acad Sci U S A; 1991 Jan; 88(1):184-8. PubMed ID: 1986364 [TBL] [Abstract][Full Text] [Related]
14. A shortened form of the Tetrahymena thermophila group I intron can catalyze the complete splicing reaction in trans. Sargueil B; Tanner NK J Mol Biol; 1993 Oct; 233(4):629-43. PubMed ID: 8411170 [TBL] [Abstract][Full Text] [Related]
15. Dissecting and analyzing the secondary structure domains of group I introns through the use of chimeric intron constructs. Tanner NK; Sargueil B J Mol Biol; 1995 Oct; 252(5):583-95. PubMed ID: 7563076 [TBL] [Abstract][Full Text] [Related]
16. New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme. Lehnert V; Jaeger L; Michel F; Westhof E Chem Biol; 1996 Dec; 3(12):993-1009. PubMed ID: 9000010 [TBL] [Abstract][Full Text] [Related]
17. Compensatory mutations demonstrate that P8 and P6 are RNA secondary structure elements important for processing of a group I intron. Williamson CL; Desai NM; Burke JM Nucleic Acids Res; 1989 Jan; 17(2):675-89. PubMed ID: 2915927 [TBL] [Abstract][Full Text] [Related]
18. Conserved base-pairings between C266-A268 and U307-G309 in the P7 of the Tetrahymena ribozyme is nonessential for the in vitro self-splicing reaction. Oe Y; Ikawa Y; Shiraishi H; Inoue T Biochem Biophys Res Commun; 2001 Jun; 284(4):948-54. PubMed ID: 11409885 [TBL] [Abstract][Full Text] [Related]
19. The P4-P6 domain directs higher order folding of the Tetrahymena ribozyme core. Doherty EA; Doudna JA Biochemistry; 1997 Mar; 36(11):3159-69. PubMed ID: 9115992 [TBL] [Abstract][Full Text] [Related]
20. Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons. Puttaraju M; Been MD Nucleic Acids Res; 1992 Oct; 20(20):5357-64. PubMed ID: 1279519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]