BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12797623)

  • 1. Trabecular shear stresses predict in vivo linear microcrack density but not diffuse damage in human vertebral cancellous bone.
    Yeni YN; Hou FJ; Ciarelli T; Vashishth D; Fyhrie DP
    Ann Biomed Eng; 2003 Jun; 31(6):726-32. PubMed ID: 12797623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trabecular shear stress in human vertebral cancellous bone: intra- and inter-individual variations.
    Yeni YN; Hou FJ; Vashishth D; Fyhrie DP
    J Biomech; 2001 Oct; 34(10):1341-6. PubMed ID: 11522314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trabecular shear stress amplification and variability in human vertebral cancellous bone: relationship with age, gender, spine level and trabecular architecture.
    Yeni YN; Zelman EA; Divine GW; Kim DG; Fyhrie DP
    Bone; 2008 Mar; 42(3):591-6. PubMed ID: 18180212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element modeling of trabecular bone damage.
    Kosmopoulos V; Keller TS
    Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):209-16. PubMed ID: 12888432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human cancellous bone from T12-L1 vertebrae has unique microstructural and trabecular shear stress properties.
    Yeni YN; Kim DG; Divine GW; Johnson EM; Cody DD
    Bone; 2009 Jan; 44(1):130-6. PubMed ID: 18848654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of damage on the viscoelastic behavior of human vertebral trabecular bone.
    Bredbenner TL; Davy DT
    J Biomech Eng; 2006 Aug; 128(4):473-80. PubMed ID: 16813438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vertebroplasty and kyphoplasty affect vertebral motion segment stiffness and stress distributions: a microstructural finite-element study.
    Keller TS; Kosmopoulos V; Lieberman IH
    Spine (Phila Pa 1976); 2005 Jun; 30(11):1258-65. PubMed ID: 15928549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions.
    Crawford RP; Rosenberg WS; Keaveny TM
    J Biomech Eng; 2003 Aug; 125(4):434-8. PubMed ID: 12968567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical comparison of mono-segment transpedicular fixation with short-segment fixation for treatment of thoracolumbar fractures: a finite element analysis.
    Xu G; Fu X; Du C; Ma J; Li Z; Tian P; Zhang T; Ma X
    Proc Inst Mech Eng H; 2014 Oct; 228(10):1005-13. PubMed ID: 25267283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear stress distribution in the trabeculae of human vertebral bone.
    Fyhrie DP; Hoshaw SJ; Hamid MS; Hou FJ
    Ann Biomed Eng; 2000; 28(10):1194-9. PubMed ID: 11144980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical effects of different vertebral heights after augmentation of osteoporotic vertebral compression fracture: a three-dimensional finite element analysis.
    Zhao WT; Qin DP; Zhang XG; Wang ZP; Tong Z
    J Orthop Surg Res; 2018 Feb; 13(1):32. PubMed ID: 29422073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue.
    Kosmopoulos V; Schizas C; Keller TS
    J Biomech; 2008; 41(3):515-22. PubMed ID: 18076887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo trabecular microcracks in human vertebral bone.
    Wenzel TE; Schaffler MB; Fyhrie DP
    Bone; 1996 Aug; 19(2):89-95. PubMed ID: 8853850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathogenesis of Vertebral Anterior Wedge Deformity: A 2-Stage Process?
    Landham PR; Gilbert SJ; Baker-Rand HL; Pollintine P; Robson Brown KA; Adams MA; Dolan P
    Spine (Phila Pa 1976); 2015 Jun; 40(12):902-8. PubMed ID: 25822544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of damage to trabecular bone of the osteoporotic human acetabulum at small strains using nonlinear micro-finite element analyses.
    Ding H; Zhu ZA; Dai KR
    Chin Med J (Engl); 2009 Sep; 122(17):2041-7. PubMed ID: 19781393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical and trabecular load sharing in the human vertebral body.
    Eswaran SK; Gupta A; Adams MF; Keaveny TM
    J Bone Miner Res; 2006 Feb; 21(2):307-14. PubMed ID: 16418787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage.
    Fazzalari NL; Forwood MR; Smith K; Manthey BA; Herreen P
    Bone; 1998 Apr; 22(4):381-8. PubMed ID: 9556139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microdamage propagation in trabecular bone due to changes in loading mode.
    Wang X; Niebur GL
    J Biomech; 2006; 39(5):781-90. PubMed ID: 16488217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabric-based Tsai-Wu yield criteria for vertebral trabecular bone in stress and strain space.
    Wolfram U; Gross T; Pahr DH; Schwiedrzik J; Wilke HJ; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():218-28. PubMed ID: 23159819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.