BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

563 related articles for article (PubMed ID: 12797829)

  • 1. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors.
    Sancar A
    Chem Rev; 2003 Jun; 103(6):2203-37. PubMed ID: 12797829
    [No Abstract]   [Full Text] [Related]  

  • 2. Photolyase and cryptochrome blue-light photoreceptors.
    Sancar A
    Adv Protein Chem; 2004; 69():73-100. PubMed ID: 15588840
    [No Abstract]   [Full Text] [Related]  

  • 3. Photolyase/cryptochrome family blue-light photoreceptors use light energy to repair DNA or set the circadian clock.
    Sancar A; Thompson C; Thresher RJ; Araujo F; Mo J; Ozgur S; Vagas E; Dawut L; Selby CP
    Cold Spring Harb Symp Quant Biol; 2000; 65():157-71. PubMed ID: 12760030
    [No Abstract]   [Full Text] [Related]  

  • 4. Photolyase/cryptochrome blue-light photoreceptors use photon energy to repair DNA and reset the circadian clock.
    Thompson CL; Sancar A
    Oncogene; 2002 Dec; 21(58):9043-56. PubMed ID: 12483519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A third member of the photolyase/blue-light photoreceptor family in Drosophila: a putative circadian photoreceptor.
    Selby CP; Sancar A
    Photochem Photobiol; 1999 Jan; 69(1):105-7. PubMed ID: 10063805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of DNA photolyases.
    Sancar GB; Sancar A
    Methods Enzymol; 2006; 408():121-56. PubMed ID: 16793367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity.
    Malhotra K; Kim ST; Batschauer A; Dawut L; Sancar A
    Biochemistry; 1995 May; 34(20):6892-9. PubMed ID: 7756321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The evolution and function of blue and red light photoreceptors.
    Falciatore A; Bowler C
    Curr Top Dev Biol; 2005; 68():317-50. PubMed ID: 16125004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction mechanisms of DNA photolyase.
    Brettel K; Byrdin M
    Curr Opin Struct Biol; 2010 Dec; 20(6):693-701. PubMed ID: 20705454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Photolyase/Cryptochrome Family of Proteins as DNA Repair Enzymes and Transcriptional Repressors.
    Kavakli IH; Baris I; Tardu M; Gül Ş; Öner H; Çal S; Bulut S; Yarparvar D; Berkel Ç; Ustaoğlu P; Aydın C
    Photochem Photobiol; 2017 Jan; 93(1):93-103. PubMed ID: 28067410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The coevolution of blue-light photoreception and circadian rhythms.
    Gehring W; Rosbash M
    J Mol Evol; 2003; 57 Suppl 1():S286-9. PubMed ID: 15008426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Similarity among the Drosophila (6-4)photolyase, a human photolyase homolog, and the DNA photolyase-blue-light photoreceptor family.
    Todo T; Ryo H; Yamamoto K; Toh H; Inui T; Ayaki H; Nomura T; Ikenaga M
    Science; 1996 Apr; 272(5258):109-12. PubMed ID: 8600518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhodobacter sphaeroides CryB is a bacterial cryptochrome with (6-4) photolyase activity.
    von Zadow A; Ignatz E; Pokorny R; Essen LO; Klug G
    FEBS J; 2016 Dec; 283(23):4291-4309. PubMed ID: 27739235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and sequence analysis of the gene encoding (6-4)photolyase from Dunaliella salina.
    Yi Y; Yi C; Qian L; Min L; Long C; Linhan B; Zhirong Y; Dairong Q
    Biotechnol Lett; 2006 Mar; 28(5):309-14. PubMed ID: 16614917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional evolution of the photolyase/cryptochrome protein family: importance of the C terminus of mammalian CRY1 for circadian core oscillator performance.
    Chaves I; Yagita K; Barnhoorn S; Okamura H; van der Horst GT; Tamanini F
    Mol Cell Biol; 2006 Mar; 26(5):1743-53. PubMed ID: 16478995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair.
    Mees A; Klar T; Gnau P; Hennecke U; Eker AP; Carell T; Essen LO
    Science; 2004 Dec; 306(5702):1789-93. PubMed ID: 15576622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of DNA Repair by Photolyase and Excision Nuclease (Nobel Lecture).
    Sancar A
    Angew Chem Int Ed Engl; 2016 Jul; 55(30):8502-27. PubMed ID: 27337655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure function analysis of mammalian cryptochromes.
    Tamanini F; Chaves I; Bajek MI; van der Horst GT
    Cold Spring Harb Symp Quant Biol; 2007; 72():133-9. PubMed ID: 18419270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraprotein radical transfer during photoactivation of DNA photolyase.
    Aubert C; Vos MH; Mathis P; Eker AP; Brettel K
    Nature; 2000 Jun; 405(6786):586-90. PubMed ID: 10850720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoreactivation of (6-4) photolyase in Dunaliella salina.
    Yan Lv X; Rong Qiao D; Xiong Y; Xu H; You FF; Cao Y; He X; Cao Y
    FEMS Microbiol Lett; 2008 Jun; 283(1):42-6. PubMed ID: 18399992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.