BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 12798358)

  • 1. Concurrent corticosteroid and phenanthrene transformation by filamentous fungus Cunninghamella elegans.
    Lisowska K; Długoński J
    J Steroid Biochem Mol Biol; 2003 May; 85(1):63-9. PubMed ID: 12798358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The expression of cytochrome P-450 and cytochrome P-450 reductase genes in the simultaneous transformation of corticosteroids and phenanthrene by Cunninghamella elegans.
    Lisowska K; Szemraj J; Rózalska S; Długoński J
    FEMS Microbiol Lett; 2006 Aug; 261(2):175-80. PubMed ID: 16907717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of anthracene and phenanthrene by filamentous fungi capable of cortexolone 11-hydroxylation.
    Lisowska K; Długoński J
    J Basic Microbiol; 1999; 39(2):117-25. PubMed ID: 10335604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of the corticosteroid hormone cortexolone on the metabolites produced during phenanthrene biotransformation in Cunninghamella elegans.
    Lisowska K; Długoński J; Freeman JP; Cerniglia CE
    Chemosphere; 2006 Aug; 64(9):1499-506. PubMed ID: 16504243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of chloronaphthalenes and polycyclic aromatic hydrocarbons by the white-rot fungus Phlebia lindtneri.
    Mori T; Kitano S; Kondo R
    Appl Microbiol Biotechnol; 2003 May; 61(4):380-3. PubMed ID: 12743769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyhalothrin biodegradation in Cunninghamella elegans.
    Palmer-Brown W; de Melo Souza PL; Murphy CD
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1414-1421. PubMed ID: 30426373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal transformations of antihistamines: metabolism of cyproheptadine hydrochloride by Cunninghamella elegans.
    Zhang D; Hansen EB; Deck J; Heinze TM; Henderson A; Korfmacher WA; Cerniglia CE
    Xenobiotica; 1997 Mar; 27(3):301-15. PubMed ID: 9141237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone.
    Chen J; Fan F; Qu G; Tang J; Xi Y; Bi C; Sun Z; Zhang X
    Metab Eng; 2020 Jan; 57():31-42. PubMed ID: 31669370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorotelomer alcohols are efficiently biotransformed by Cunninghamella elegans.
    Khan MF; Murphy CD
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):23613-23623. PubMed ID: 36327087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cunninghamella--a microbial model for drug metabolism studies--a review.
    Asha S; Vidyavathi M
    Biotechnol Adv; 2009; 27(1):16-29. PubMed ID: 18775773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The CYPome of the model xenobiotic-biotransforming fungus Cunninghamella elegans.
    Palmer-Brown W; Miranda-CasoLuengo R; Wolfe KH; Byrne KP; Murphy CD
    Sci Rep; 2019 Jun; 9(1):9240. PubMed ID: 31239505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans.
    Cerniglia CE; Yang SK
    Appl Environ Microbiol; 1984 Jan; 47(1):119-24. PubMed ID: 6696409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a novel metabolite in phenanthrene metabolism by the fungus Cunninghamella elegans.
    Cerniglia CE; Campbell WL; Freeman JP; Evans FE
    Appl Environ Microbiol; 1989 Sep; 55(9):2275-9. PubMed ID: 2802607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotransformation of cortexolone to hydrocortisone by molds using a rapid color development assay.
    Manosroi J; Chisti Y; Manosroi A
    Prikl Biokhim Mikrobiol; 2006; 42(5):547-51. PubMed ID: 17066954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity-Based Protein Profiling to Probe Relationships between Cytochrome P450 Enzymes and Early-Age Metabolism of Two Polycyclic Aromatic Hydrocarbons (PAHs): Phenanthrene and Retene.
    Gaither KA; Garcia WL; Tyrrell KJ; Wright AT; Smith JN
    Chem Res Toxicol; 2024 May; 37(5):711-722. PubMed ID: 38602333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors regulating the steroid 11-hydroxylation by non-germinating spores of Cunninghamella elegans (Lendner).
    Jaworski A; Sedlaczek L; Wilmańska D; Sasiak A; Strycharska A
    Z Allg Mikrobiol; 1982; 22(5):327-33. PubMed ID: 7124000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of phenanthrene by house fly CYP6D1 and dog liver cytochrome P450.
    Korytko PJ; Quimby FW; Scott JG
    J Biochem Mol Toxicol; 2000; 14(1):20-5. PubMed ID: 10561078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbazole hydroxylation by the filamentous fungi of the Cunninghamella species.
    Zawadzka K; Bernat P; Felczak A; Lisowska K
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):19658-66. PubMed ID: 26276273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quinoline biodegradation by filamentous fungus Cunninghamella elegans and adaptive modifications of the fungal membrane composition.
    Felczak A; Bernat P; Różalska S; Lisowska K
    Environ Sci Pollut Res Int; 2016 May; 23(9):8872-80. PubMed ID: 26810790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotransformation of fluorinated drugs and xenobiotics by the model fungus Cunninghamella elegans.
    Khan MF; Hof C; Niemcova P; Murphy CD
    Methods Enzymol; 2024; 696():251-285. PubMed ID: 38658083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.