BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 12799002)

  • 1. Regulation of the isofunctional genes ubiD and ubiX of the ubiquinone biosynthetic pathway of Escherichia coli.
    Zhang H; Javor GT
    FEMS Microbiol Lett; 2003 Jun; 223(1):67-72. PubMed ID: 12799002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of UbiX in Escherichia coli coenzyme Q biosynthesis.
    Gulmezian M; Hyman KR; Marbois BN; Clarke CF; Javor GT
    Arch Biochem Biophys; 2007 Nov; 467(2):144-53. PubMed ID: 17889824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the ubiquinone (coenzyme Q) biosynthetic genes ubiCA in Escherichia coli.
    Kwon O; Druce-Hoffman M; Meganathan R
    Curr Microbiol; 2005 Apr; 50(4):180-9. PubMed ID: 15902464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of heme and oxygen availability on hemA gene expression in Escherichia coli: role of the fnr, arcA, and himA gene products.
    Darie S; Gunsalus RP
    J Bacteriol; 1994 Sep; 176(17):5270-6. PubMed ID: 8071201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic evidence for an interaction of the UbiG O-methyltransferase with UbiX in Escherichia coli coenzyme Q biosynthesis.
    Gulmezian M; Zhang H; Javor GT; Clarke CF
    J Bacteriol; 2006 Sep; 188(17):6435-9. PubMed ID: 16923914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The UbiX-UbiD system: The biosynthesis and use of prenylated flavin (prFMN).
    Marshall SA; Payne KAP; Leys D
    Arch Biochem Biophys; 2017 Oct; 632():209-221. PubMed ID: 28754323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ubiquinone (coenzyme Q) biosynthesis in Chlamydophila pneumoniae AR39: identification of the ubiD gene.
    Liu J; Liu JH
    Acta Biochim Biophys Sin (Shanghai); 2006 Oct; 38(10):725-30. PubMed ID: 17033719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low ubiquinone content in Escherichia coli causes thiol hypersensitivity.
    Zeng H; Snavely I; Zamorano P; Javor GT
    J Bacteriol; 1998 Jul; 180(14):3681-5. PubMed ID: 9658014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the ubiD gene on the Escherichia coli chromosome.
    Zhang H; Javor GT
    J Bacteriol; 2000 Nov; 182(21):6243-6. PubMed ID: 11029449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic and anaerobic regulation of the ubiCA operon, encoding enzymes for the first two committed steps of ubiquinone biosynthesis in Escherichia coli.
    Søballe B; Poole RK
    FEBS Lett; 1997 Sep; 414(2):373-6. PubMed ID: 9315722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isofunctional enzymes PAD1 and UbiX catalyze formation of a novel cofactor required by ferulic acid decarboxylase and 4-hydroxy-3-polyprenylbenzoic acid decarboxylase.
    Lin F; Ferguson KL; Boyer DR; Lin XN; Marsh EN
    ACS Chem Biol; 2015 Apr; 10(4):1137-44. PubMed ID: 25647642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of ArcA and Fnr in expression of Escherichia coli thiol peroxidase gene.
    Kim SJ; Han YH; Kim IH; Kim HK
    IUBMB Life; 1999 Aug; 48(2):215-8. PubMed ID: 10794600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis.
    White MD; Payne KA; Fisher K; Marshall SA; Parker D; Rattray NJ; Trivedi DK; Goodacre R; Rigby SE; Scrutton NS; Hay S; Leys D
    Nature; 2015 Jun; 522(7557):502-6. PubMed ID: 26083743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis and Activity of Prenylated FMN Cofactors.
    Wang PH; Khusnutdinova AN; Luo F; Xiao J; Nemr K; Flick R; Brown G; Mahadevan R; Edwards EA; Yakunin AF
    Cell Chem Biol; 2018 May; 25(5):560-570.e6. PubMed ID: 29551348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of ubiquinone in Escherichia coli K-12: location of genes affecting the metabolism of 3-octaprenyl-4-hydroxybenzoic acid and 2-octaprenylphenol.
    Cox GB; Young IG; McCann LM; Gibson F
    J Bacteriol; 1969 Aug; 99(2):450-8. PubMed ID: 4897112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of multiple ArcA recognition sites in anaerobic regulation of succinate dehydrogenase (sdhCDAB) gene expression in Escherichia coli.
    Shen J; Gunsalus RP
    Mol Microbiol; 1997 Oct; 26(2):223-36. PubMed ID: 9383149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ArcA and FNR on the expression of genes related to the oxygen regulation and the glycolysis pathway in Escherichia coli under microaerobic growth conditions.
    Shalel-Levanon S; San KY; Bennett GN
    Biotechnol Bioeng; 2005 Oct; 92(2):147-59. PubMed ID: 15988767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of oxygen on the Escherichia coli ArcA and FNR regulation systems and metabolic responses.
    Levanon SS; San KY; Bennett GN
    Biotechnol Bioeng; 2005 Mar; 89(5):556-64. PubMed ID: 15669087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of fumarase (fumB) gene expression in Escherichia coli in response to oxygen, iron and heme availability: role of the arcA, fur, and hemA gene products.
    Tseng CP
    FEMS Microbiol Lett; 1997 Dec; 157(1):67-72. PubMed ID: 9418241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerobic activation of transcription of the anaerobically inducible Escherichia coli focA-pfl operon by fumarate nitrate regulator.
    Reyes-Ramírez F; Sawers RG
    FEMS Microbiol Lett; 2006 Feb; 255(2):262-7. PubMed ID: 16448504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.