These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 12799430)
1. The C-terminal domain of Escherichia coli MutY is involved in DNA binding and glycosylase activities. Li L; Lu AL Nucleic Acids Res; 2003 Jun; 31(12):3038-49. PubMed ID: 12799430 [TBL] [Abstract][Full Text] [Related]
2. Characterization of an Escherichia coli mutant MutY with a cysteine to alanine mutation at the iron-sulfur cluster domain. Lu AL; Wright PM Biochemistry; 2003 Apr; 42(13):3742-50. PubMed ID: 12667065 [TBL] [Abstract][Full Text] [Related]
3. The C-terminal domain of MutY glycosylase determines the 7,8-dihydro-8-oxo-guanine specificity and is crucial for mutation avoidance. Li X; Wright PM; Lu AL J Biol Chem; 2000 Mar; 275(12):8448-55. PubMed ID: 10722679 [TBL] [Abstract][Full Text] [Related]
4. Specific recognition of A/G and A/7,8-dihydro-8-oxoguanine (8-oxoG) mismatches by Escherichia coli MutY: removal of the C-terminal domain preferentially affects A/8-oxoG recognition. Gogos A; Cillo J; Clarke ND; Lu AL Biochemistry; 1996 Dec; 35(51):16665-71. PubMed ID: 8988002 [TBL] [Abstract][Full Text] [Related]
5. Intact MutY and its catalytic domain differentially contact with A/8-oxoG-containing DNA. Li X; Lu AL Nucleic Acids Res; 2000 Dec; 28(23):4593-603. PubMed ID: 11095667 [TBL] [Abstract][Full Text] [Related]
6. The C-terminal domain of the adenine-DNA glycosylase MutY confers specificity for 8-oxoguanine.adenine mispairs and may have evolved from MutT, an 8-oxo-dGTPase. Noll DM; Gogos A; Granek JA; Clarke ND Biochemistry; 1999 May; 38(20):6374-9. PubMed ID: 10350454 [TBL] [Abstract][Full Text] [Related]
7. Insights into the role of Val45 and Gln182 of Escherichia coli MutY in DNA substrate binding and specificity. Chang PW; Madabushi A; Lu AL BMC Biochem; 2009 Jun; 10():19. PubMed ID: 19523222 [TBL] [Abstract][Full Text] [Related]
8. Adenine Glycosylase MutY of Corynebacterium pseudotuberculosis presents the antimutator phenotype and evidences of glycosylase/AP lyase activity in vitro. de Faria RC; Vila-Nova LG; Bitar M; Resende BC; Arantes LS; Rebelato AB; Azevedo VAC; Franco GR; Machado CR; Santos LLD; de Oliveira Lopes D Infect Genet Evol; 2016 Oct; 44():318-329. PubMed ID: 27456281 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the recombinant MutY homolog, an adenine DNA glycosylase, from yeast Schizosaccharomyces pombe. Lu AL; Fawcett WP J Biol Chem; 1998 Sep; 273(39):25098-105. PubMed ID: 9737967 [TBL] [Abstract][Full Text] [Related]
10. Purification and characterization of a mammalian homolog of Escherichia coli MutY mismatch repair protein from calf liver mitochondria. Parker A; Gu Y; Lu AL Nucleic Acids Res; 2000 Sep; 28(17):3206-15. PubMed ID: 10954587 [TBL] [Abstract][Full Text] [Related]
11. Escherichia coli MutY protein has a guanine-DNA glycosylase that acts on 7,8-dihydro-8-oxoguanine:guanine mispair to prevent spontaneous G:C-->C:G transversions. Zhang QM; Ishikawa N; Nakahara T; Yonei S Nucleic Acids Res; 1998 Oct; 26(20):4669-75. PubMed ID: 9753736 [TBL] [Abstract][Full Text] [Related]
12. Molecular cloning and functional analysis of the MutY homolog of Deinococcus radiodurans. Li X; Lu AL J Bacteriol; 2001 Nov; 183(21):6151-8. PubMed ID: 11591657 [TBL] [Abstract][Full Text] [Related]
13. Structural similarities between MutT and the C-terminal domain of MutY. Volk DE; House PG; Thiviyanathan V; Luxon BA; Zhang S; Lloyd RS; Gorenstein DG Biochemistry; 2000 Jun; 39(25):7331-6. PubMed ID: 10858279 [TBL] [Abstract][Full Text] [Related]
14. Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Michaels ML; Cruz C; Grollman AP; Miller JH Proc Natl Acad Sci U S A; 1992 Aug; 89(15):7022-5. PubMed ID: 1495996 [TBL] [Abstract][Full Text] [Related]
15. Role of the N-terminal proline residue in the catalytic activities of the Escherichia coli Fpg protein. Sidorkina OM; Laval J J Biol Chem; 2000 Apr; 275(14):9924-9. PubMed ID: 10744666 [TBL] [Abstract][Full Text] [Related]
16. Role of lysine-57 in the catalytic activities of Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg protein). Sidorkina OM; Laval J Nucleic Acids Res; 1998 Dec; 26(23):5351-7. PubMed ID: 9826758 [TBL] [Abstract][Full Text] [Related]
17. Insight into the functional consequences of inherited variants of the hMYH adenine glycosylase associated with colorectal cancer: complementation assays with hMYH variants and pre-steady-state kinetics of the corresponding mutated E.coli enzymes. Chmiel NH; Livingston AL; David SS J Mol Biol; 2003 Mar; 327(2):431-43. PubMed ID: 12628248 [TBL] [Abstract][Full Text] [Related]
18. Potential double-flipping mechanism by E. coli MutY. House PG; Volk DE; Thiviyanathan V; Manuel RC; Luxon BA; Gorenstein DG; Lloyd RS Prog Nucleic Acid Res Mol Biol; 2001; 68():349-64. PubMed ID: 11554310 [TBL] [Abstract][Full Text] [Related]
19. Efficient recognition of substrates and substrate analogs by the adenine glycosylase MutY requires the C-terminal domain. Chmiel NH; Golinelli MP; Francis AW; David SS Nucleic Acids Res; 2001 Jan; 29(2):553-64. PubMed ID: 11139626 [TBL] [Abstract][Full Text] [Related]
20. Role for lysine 142 in the excision of adenine from A:G mispairs by MutY DNA glycosylase of Escherichia coli. Zharkov DO; Gilboa R; Yagil I; Kycia JH; Gerchman SE; Shoham G; Grollman AP Biochemistry; 2000 Dec; 39(48):14768-78. PubMed ID: 11101292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]