BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12800174)

  • 1. Derivation of dihedral angles from CH-CH dipolar-dipolar cross-correlated relaxation rates: a C-C torsion involving a quaternary carbon atom in epothilone A bound to tubulin.
    Carlomagno T; Sánchez VM; Blommers MJ; Griesinger C
    Angew Chem Int Ed Engl; 2003 Jun; 42(22):2515-7. PubMed ID: 12800174
    [No Abstract]   [Full Text] [Related]  

  • 2. The high-resolution solution structure of epothilone A bound to tubulin: an understanding of the structure-activity relationships for a powerful class of antitumor agents.
    Carlomagno T; Blommers MJ; Meiler J; Jahnke W; Schupp T; Petersen F; Schinzer D; Altmann KH; Griesinger C
    Angew Chem Int Ed Engl; 2003 Jun; 42(22):2511-5. PubMed ID: 12800173
    [No Abstract]   [Full Text] [Related]  

  • 3. The tubulin-bound conformation of discodermolide derived by NMR studies in solution supports a common pharmacophore model for epothilone and discodermolide.
    Sánchez-Pedregal VM; Kubicek K; Meiler J; Lyothier I; Paterson I; Carlomagno T
    Angew Chem Int Ed Engl; 2006 Nov; 45(44):7388-94. PubMed ID: 17036370
    [No Abstract]   [Full Text] [Related]  

  • 4. Conformational preferences of natural and C3-modified epothilones in aqueous solution.
    Erdélyi M; Pfeiffer B; Hauenstein K; Fohrer J; Gertsch J; Altmann KH; Carlomagno T
    J Med Chem; 2008 Mar; 51(5):1469-73. PubMed ID: 18271516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The binding mode of epothilone A on alpha,beta-tubulin by electron crystallography.
    Nettles JH; Li H; Cornett B; Krahn JM; Snyder JP; Downing KH
    Science; 2004 Aug; 305(5685):866-9. PubMed ID: 15297674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The binding mode of side chain- and C3-modified epothilones to tubulin.
    Erdélyi M; Navarro-Vázquez A; Pfeiffer B; Kuzniewski CN; Felser A; Widmer T; Gertsch J; Pera B; Díaz JF; Altmann KH; Carlomagno T
    ChemMedChem; 2010 Jun; 5(6):911-20. PubMed ID: 20432490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Much anticipated--the bioactive conformation of epothilone and its binding to tubulin.
    Heinz DW; Schubert WD; Höfle G
    Angew Chem Int Ed Engl; 2005 Feb; 44(9):1298-301. PubMed ID: 15714588
    [No Abstract]   [Full Text] [Related]  

  • 8. Structural basis of the activity of the microtubule-stabilizing agent epothilone a studied by NMR spectroscopy in solution.
    Reese M; Sánchez-Pedregal VM; Kubicek K; Meiler J; Blommers MJ; Griesinger C; Carlomagno T
    Angew Chem Int Ed Engl; 2007; 46(11):1864-8. PubMed ID: 17274084
    [No Abstract]   [Full Text] [Related]  

  • 9. Computational study of binding of epothilone A to β-tubulin.
    Kamel K; Kolinski A
    Acta Biochim Pol; 2011; 58(2):255-60. PubMed ID: 21633729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereochemistry of cyclopentane derivatives from (2,3)J(CH) dependence on dihedral angle (theta H--C--C--X).
    Lacerda V; da Silva GV; Constantino MG; Dos Santos RB; de Castro EV; Silva RC
    Magn Reson Chem; 2008 Mar; 46(3):268-73. PubMed ID: 18236435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum-chemical study on the bioactive conformation of epothilones.
    Jiménez VA
    J Chem Inf Model; 2010 Dec; 50(12):2176-90. PubMed ID: 21077585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaffolds for microtubule inhibition through extensive modification of the epothilone template.
    Cachoux F; Isarno T; Wartmann M; Altmann KH
    Angew Chem Int Ed Engl; 2005 Dec; 44(45):7469-73. PubMed ID: 16240301
    [No Abstract]   [Full Text] [Related]  

  • 13. Molecular modeling study on the tubulin-binding modes of epothilone derivatives: Insight into the structural basis for epothilones activity.
    Jiménez VA; Alderete JB; Navarrete KR
    Chem Biol Drug Des; 2017 Dec; 90(6):1247-1259. PubMed ID: 28632973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR relaxation interference effects and internal dynamics in gamma-cyclodextrin.
    Ghalebani L; Kotsyubynskyy D; Kowalewski J
    J Magn Reson; 2008 Nov; 195(1):1-8. PubMed ID: 18760946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational response of the phosphatidylcholine headgroup to bilayer surface charge: torsion angle constraints from dipolar and quadrupolar couplings in bicelles.
    Semchyschyn DJ; Macdonald PM
    Magn Reson Chem; 2004 Feb; 42(2):89-104. PubMed ID: 14745788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Total synthesis of hypermodified epothilone analogs with potent in vitro antitumor activity.
    Kuzniewski CN; Gertsch J; Wartmann M; Altmann KH
    Org Lett; 2008 Mar; 10(6):1183-6. PubMed ID: 18303900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insight into epothilones antitumor activity based on the conformational preferences and tubulin binding modes of epothilones A and B obtained from molecular dynamics simulations.
    Jiménez VA; Alderete JB; Navarrete KR
    J Biomol Struct Dyn; 2015; 33(4):789-803. PubMed ID: 24773261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand-target interactions: what can we learn from NMR?
    Carlomagno T
    Annu Rev Biophys Biomol Struct; 2005; 34():245-66. PubMed ID: 15869390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of furano-epothilone D.
    Schinzer D; Bourguet E; Ducki S
    Chemistry; 2004 Jul; 10(13):3217-24. PubMed ID: 15224330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal dynamics of hydroxymethyl rotation from CH2 cross-correlated dipolar relaxation in methyl-beta-D-glucopyranoside.
    Kövér KE; Batta G; Kowalewski J; Ghalebani L; Kruk D
    J Magn Reson; 2004 Apr; 167(2):273-81. PubMed ID: 15040983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.