BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 12801596)

  • 1. Dynorphin and the hypothalamo-pituitary-adrenal axis during fetal development.
    Szeto HH
    Life Sci; 2003 Jun; 73(6):749-58. PubMed ID: 12801596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynorphin A1-13 stimulates ovine fetal pituitary-adrenal function through a novel nonopioid mechanism.
    Taylor CC; Wu D; Soong Y; Yee JS; Szeto HH
    J Pharmacol Exp Ther; 1997 Jan; 280(1):416-21. PubMed ID: 8996223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of N-methyl-D-aspartate receptors in the release of adrenocorticotropin by dynorphin A1-13.
    Szeto HH; Soong Y; Wu D
    Neuroendocrinology; 1999 Jan; 69(1):28-33. PubMed ID: 9892848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maternal and fetal hypothalamic-pituitary-adrenal axes during pregnancy and postpartum.
    Mastorakos G; Ilias I
    Ann N Y Acad Sci; 2003 Nov; 997():136-49. PubMed ID: 14644820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The kappa-opioid receptor agonist MR-2034 stimulates the rat hypothalamic-pituitary-adrenal axis: studies in vivo and in vitro.
    Calogero AE; Scaccianoce S; Burrello N; Nicolai R; Muscolo LA; Kling MA; Angelucci L; D'Agata R
    J Neuroendocrinol; 1996 Aug; 8(8):579-85. PubMed ID: 8866244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site and mechanism of action of dynorphin A-(1-13) and N-methyl-D-aspartate on ACTH release in fetal sheep.
    Nardo L; Soong Y; Wu D; Young IR; Walker D; Szeto HH
    Am J Physiol Endocrinol Metab; 2002 Jun; 282(6):E1301-7. PubMed ID: 12006360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential mechanisms of ovine fetal pituitary stimulation by a selective kappa-opioid agonist and by dynorphin.
    Taylor CC; WU D; Soong Y; Yee JS; Szeto HH
    Neuroendocrinology; 1996 Dec; 64(6):419-24. PubMed ID: 8990074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mu-, delta-, kappa- and epsilon-opioid receptor modulation of the hypothalamic-pituitary-adrenocortical (HPA) axis: subchronic tolerance studies of endogenous opioid peptides.
    Iyengar S; Kim HS; Wood PL
    Brain Res; 1987 Dec; 435(1-2):220-6. PubMed ID: 2892574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of excitatory amino acid transmitters on hypothalamic corticotropin-releasing hormone (CRH) and arginine-vasopressin (AVP) release in vitro: implications in pituitary-adrenal regulation.
    Patchev VK; Karalis K; Chrousos GP
    Brain Res; 1994 Jan; 633(1-2):312-6. PubMed ID: 7907936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamate agonists activate the hypothalamic-pituitary-adrenal axis through hypothalamic paraventricular nucleus but not through vasopressinerg neurons.
    Zelena D; Mergl Z; Makara GB
    Brain Res; 2005 Jan; 1031(2):185-93. PubMed ID: 15649443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of arginine vasopressin secretion from cultured ovine hypothalamic cells by glucocorticoids and opioid peptides.
    Currie IS; Gillies G; Brooks AN
    Neuroendocrinology; 1994 Oct; 60(4):360-7. PubMed ID: 7824079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hypothalamic melanocortin system stimulates the hypothalamo-pituitary-adrenal axis in vitro and in vivo in male rats.
    Dhillo WS; Small CJ; Seal LJ; Kim MS; Stanley SA; Murphy KG; Ghatei MA; Bloom SR
    Neuroendocrinology; 2002 Apr; 75(4):209-16. PubMed ID: 11979051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vasopressin and the regulation of hypothalamic-pituitary-adrenal axis function: implications for the pathophysiology of depression.
    Scott LV; Dinan TG
    Life Sci; 1998; 62(22):1985-98. PubMed ID: 9627097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central bombesin activates the hypothalamic-pituitary-adrenal axis. Effects on regional levels and release of corticotropin-releasing hormone and arginine-vasopressin.
    Kent P; Anisman H; Merali Z
    Neuroendocrinology; 2001 Mar; 73(3):203-14. PubMed ID: 11307039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynorphin A elicits an increase in intracellular calcium in cultured neurons via a non-opioid, non-NMDA mechanism.
    Tang Q; Lynch RM; Porreca F; Lai J
    J Neurophysiol; 2000 May; 83(5):2610-5. PubMed ID: 10805661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corticotropin-releasing hormone and the sympathoadrenal system are major mediators in the effects of peripherally administered exendin-4 on the hypothalamic-pituitary-adrenal axis of male rats.
    Gil-Lozano M; Romaní-Pérez M; Outeiriño-Iglesias V; Vigo E; González-Matías LC; Brubaker PL; Mallo F
    Endocrinology; 2014 Jul; 155(7):2511-23. PubMed ID: 24731096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foetal endocrine maturation.
    Challis JR; Bassett N; Berdusco ET; Han VK; Lu F; Riley SC; Yang K
    Equine Vet J Suppl; 1993 Apr; (14):35-40. PubMed ID: 9079135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticotropin-releasing hormone deficiency reveals major fetal but not adult glucocorticoid need.
    Muglia L; Jacobson L; Dikkes P; Majzoub JA
    Nature; 1995 Feb; 373(6513):427-32. PubMed ID: 7830793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the hypothalamic-pituitary-adrenal axis.
    Papadimitriou A; Priftis KN
    Neuroimmunomodulation; 2009; 16(5):265-71. PubMed ID: 19571587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of the hypothalamo-pituitary-adrenal axis by the growth hormone (GH) secretagogue, GH-releasing peptide-6, in rats.
    Thomas GB; Fairhall KM; Robinson IC
    Endocrinology; 1997 Apr; 138(4):1585-91. PubMed ID: 9075719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.