These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 12801798)

  • 41. Developing antibacterial vaccines in genomics and proteomics era.
    Kaushik DK; Sehgal D
    Scand J Immunol; 2008 Jun; 67(6):544-52. PubMed ID: 18397199
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reverse vaccinology in the 21st century: improvements over the original design.
    Donati C; Rappuoli R
    Ann N Y Acad Sci; 2013 May; 1285():115-32. PubMed ID: 23527566
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Current Challenges in Vaccinology.
    Kennedy RB; Ovsyannikova IG; Palese P; Poland GA
    Front Immunol; 2020; 11():1181. PubMed ID: 32670279
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Designing the next generation of vaccines for global public health.
    Bagnoli F; Baudner B; Mishra RP; Bartolini E; Fiaschi L; Mariotti P; Nardi-Dei V; Boucher P; Rappuoli R
    OMICS; 2011 Sep; 15(9):545-66. PubMed ID: 21682594
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of novel vaccine candidates against cryptosporidiosis of neonatal bovines by reverse vaccinology.
    Tomazic ML; Rodriguez AE; Lombardelli J; Poklepovich T; Garro C; Galarza R; Tiranti K; Florin-Christensen M; Schnittger L
    Vet Parasitol; 2018 Dec; 264():74-78. PubMed ID: 30503096
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An In Silico Identification of Common Putative Vaccine Candidates against Treponema pallidum: A Reverse Vaccinology and Subtractive Genomics Based Approach.
    Kumar Jaiswal A; Tiwari S; Jamal SB; Barh D; Azevedo V; Soares SC
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28216574
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of novel vaccine candidates against Acinetobacter baumannii using reverse vaccinology.
    Chiang MH; Sung WC; Lien SP; Chen YZ; Lo AF; Huang JH; Kuo SC; Chong P
    Hum Vaccin Immunother; 2015; 11(4):1065-73. PubMed ID: 25751377
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of putative vaccine candidates against Helicobacter pylori exploiting exoproteome and secretome: a reverse vaccinology based approach.
    Naz A; Awan FM; Obaid A; Muhammad SA; Paracha RZ; Ahmad J; Ali A
    Infect Genet Evol; 2015 Jun; 32():280-91. PubMed ID: 25818402
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Post-Genomics and Vaccine Improvement for Leishmania.
    Seyed N; Taheri T; Rafati S
    Front Microbiol; 2016; 7():467. PubMed ID: 27092123
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A systematic, functional genomics, and reverse vaccinology approach to the identification of vaccine candidates in the cattle tick, Rhipicephalus microplus.
    Maritz-Olivier C; van Zyl W; Stutzer C
    Ticks Tick Borne Dis; 2012 Jun; 3(3):179-87. PubMed ID: 22521592
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reverse Vaccinology Approach to Potential Vaccine Candidates Against Acinetobacter baumannii.
    Shahid F; Ashraf ST; Ali A
    Methods Mol Biol; 2019; 1946():329-336. PubMed ID: 30798567
    [TBL] [Abstract][Full Text] [Related]  

  • 52. mRNA vaccines - a new era in vaccinology.
    Pardi N; Hogan MJ; Porter FW; Weissman D
    Nat Rev Drug Discov; 2018 Apr; 17(4):261-279. PubMed ID: 29326426
    [TBL] [Abstract][Full Text] [Related]  

  • 53. New Approaches to Vaccinology Made Possible by Advances in Next Generation Sequencing, Bioinformatics and Protein modeling.
    Woolums AR; Swiderski C
    Curr Issues Mol Biol; 2021; 42():605-634. PubMed ID: 33627518
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Lean Reverse Vaccinology Pipeline with Publicly Available Bioinformatic Tools.
    Cuypers B; Rappuoli R; Brozzi A
    Methods Mol Biol; 2023; 2673():341-356. PubMed ID: 37258926
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genome-based vaccine development: a short cut for the future.
    Moriel DG; Scarselli M; Serino L; Mora M; Rappuoli R; Masignani V
    Adv Exp Med Biol; 2009; 655():81-9. PubMed ID: 20047037
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recent advances in vaccinology.
    Heath AW
    Curr Opin Pharmacol; 2001 Aug; 1(4):425-30. PubMed ID: 11710743
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Updates on the web-based VIOLIN vaccine database and analysis system.
    He Y; Racz R; Sayers S; Lin Y; Todd T; Hur J; Li X; Patel M; Zhao B; Chung M; Ostrow J; Sylora A; Dungarani P; Ulysse G; Kochhar K; Vidri B; Strait K; Jourdian GW; Xiang Z
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D1124-32. PubMed ID: 24259431
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reverse vaccinology and vaccines for serogroup B Neisseria meningitidis.
    Kelly DF; Rappuoli R
    Adv Exp Med Biol; 2005; 568():217-23. PubMed ID: 16107075
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Novel vaccine design based on genomics data analysis: A review.
    Lu G; Shan S; Zainab B; Ayaz Z; He J; Xie Z; Rashid U; Zhang D; Mehmood Abbasi A
    Scand J Immunol; 2021 Mar; 93(3):e12986. PubMed ID: 33043473
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of potential antigens from non-classically secreted proteins and designing novel multitope peptide vaccine candidate against Brucella melitensis through reverse vaccinology and immunoinformatics approach.
    Vishnu US; Sankarasubramanian J; Gunasekaran P; Rajendhran J
    Infect Genet Evol; 2017 Nov; 55():151-158. PubMed ID: 28919551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.