BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 12801922)

  • 1. Partial specific volume and adiabatic compressibility of G-actin depend on the bound nucleotide.
    Kikumoto M; Tamura Y; Ooi A; Mihashi K
    J Biochem; 2003 May; 133(5):687-91. PubMed ID: 12801922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressibility and specific volume of actin decrease upon G to F transformation.
    Suzuki N; Tamura Y; Mihashi K
    Biochim Biophys Acta; 1996 Feb; 1292(2):265-72. PubMed ID: 8597572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide exchange and rheometric studies with F-actin prepared from ATP- or ADP-monomeric actin.
    Newman J; Zaner KS; Schick KL; Gershman LC; Selden LA; Kinosian HJ; Travis JL; Estes JE
    Biophys J; 1993 May; 64(5):1559-66. PubMed ID: 8324191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide-dependence of G-actin conformation from multiple molecular dynamics simulations and observation of a putatively polymerization-competent superclosed state.
    Splettstoesser T; Noé F; Oda T; Smith JC
    Proteins; 2009 Aug; 76(2):353-64. PubMed ID: 19156817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of tightly bound Mg2+ and Ca2+, nucleotides, and phalloidin on the microsecond torsional flexibility of F-actin.
    Rebello CA; Ludescher RD
    Biochemistry; 1998 Oct; 37(41):14529-38. PubMed ID: 9772181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of expressed non-polymerizable monomeric actin in the ADP and ATP states.
    Rould MA; Wan Q; Joel PB; Lowey S; Trybus KM
    J Biol Chem; 2006 Oct; 281(42):31909-19. PubMed ID: 16920713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The crystal structure of uncomplexed actin in the ADP state.
    Otterbein LR; Graceffa P; Dominguez R
    Science; 2001 Jul; 293(5530):708-11. PubMed ID: 11474115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The end of a polymerizing actin filament contains numerous ATP-subunit segments that are disconnected by ADP-subunits resulting from ATP hydrolysis.
    Pieper U; Wegner A
    Biochemistry; 1996 Apr; 35(14):4396-402. PubMed ID: 8605188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of actin-binding proteins on the thermal stability of monomeric actin.
    Pivovarova AV; Chebotareva NA; Kremneva EV; Lappalainen P; Levitsky DI
    Biochemistry; 2013 Jan; 52(1):152-60. PubMed ID: 23231323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexibility of actin filaments derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory proteins.
    Isambert H; Venier P; Maggs AC; Fattoum A; Kassab R; Pantaloni D; Carlier MF
    J Biol Chem; 1995 May; 270(19):11437-44. PubMed ID: 7744781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divalent cation-, nucleotide-, and polymerization-dependent changes in the conformation of subdomain 2 of actin.
    Moraczewska J; Wawro B; Seguro K; Strzelecka-Golaszewska H
    Biophys J; 1999 Jul; 77(1):373-85. PubMed ID: 10388764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific cleavage of the DNase-I binding loop dramatically decreases the thermal stability of actin.
    Pivovarova AV; Khaitlina SY; Levitsky DI
    FEBS J; 2010 Sep; 277(18):3812-22. PubMed ID: 20718862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of subtilisin cleavage of monomeric actin on its nucleotide binding.
    Ooi A; Mihashi K
    J Biochem; 1996 Dec; 120(6):1104-10. PubMed ID: 9010757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational changes in subdomain 2 of G-actin: fluorescence probing by dansyl ethylenediamine attached to Gln-41.
    Kim E; Motoki M; Seguro K; Muhlrad A; Reisler E
    Biophys J; 1995 Nov; 69(5):2024-32. PubMed ID: 8580345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics of actin polymerization; influence of the tightly bound divalent cation and nucleotide.
    Kinosian HJ; Selden LA; Estes JE; Gershman LC
    Biochim Biophys Acta; 1991 Apr; 1077(2):151-8. PubMed ID: 2015289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide-dependent conformational states of actin.
    Pfaendtner J; Branduardi D; Parrinello M; Pollard TD; Voth GA
    Proc Natl Acad Sci U S A; 2009 Aug; 106(31):12723-8. PubMed ID: 19620726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence study of the high pressure-induced denaturation of skeletal muscle actin.
    Ikeuchi Y; Suzuki A; Oota T; Hagiwara K; Tatsumi R; Ito T; Balny C
    Eur J Biochem; 2002 Jan; 269(1):364-71. PubMed ID: 11784331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of ATP-actin to ADP-actin reverses the affinity of monomeric actin for Ca2+ vs Mg2+.
    Selden LA; Gershman LC; Kinosian HJ; Estes JE
    FEBS Lett; 1987 Jun; 217(1):89-93. PubMed ID: 3595846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational and dynamic differences between actin filaments polymerized from ATP- or ADP-actin monomers.
    Nyitrai M; Hild G; Hartvig N; Belágyi J; Somogyi B
    J Biol Chem; 2000 Dec; 275(52):41143-9. PubMed ID: 11005806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of profilin on actin-bound nucleotide exchange and actin polymerization dynamics.
    Selden LA; Kinosian HJ; Estes JE; Gershman LC
    Biochemistry; 1999 Mar; 38(9):2769-78. PubMed ID: 10052948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.