BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12801926)

  • 1. Role of the Reverse Transcriptase, Nucleocapsid Protein, and Template Structure in the Two-step Transfer Mechanism in Retroviral Recombination.
    Roda RH; Balakrishnan M; Hanson MN; Wohrl BM; Le Grice SF; Roques BP; Gorelick RJ; Bambara RA
    J Biol Chem; 2003 Aug; 278(34):31536-46. PubMed ID: 12801926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of template RNA structure on elongation by HIV-1 reverse transcriptase.
    Klasens BI; Huthoff HT; Das AT; Jeeninga RE; Berkhout B
    Biochim Biophys Acta; 1999 Mar; 1444(3):355-70. PubMed ID: 10095059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strand transfer occurs in retroviruses by a pause-initiated two-step mechanism.
    Roda RH; Balakrishnan M; Kim JK; Roques BP; Fay PJ; Bambara RA
    J Biol Chem; 2002 Dec; 277(49):46900-11. PubMed ID: 12370183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of donor and acceptor RNA structures on the mechanism of strand transfer by HIV-1 reverse transcriptase.
    Hanson MN; Balakrishnan M; Roques BP; Bambara RA
    J Mol Biol; 2005 Nov; 353(4):772-87. PubMed ID: 16216274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms that prevent template inactivation by HIV-1 reverse transcriptase RNase H cleavages.
    Purohit V; Roques BP; Kim B; Bambara RA
    J Biol Chem; 2007 Apr; 282(17):12598-609. PubMed ID: 17337733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that HIV-1 reverse transcriptase employs the DNA 3' end-directed primary/secondary RNase H cleavage mechanism during synthesis and strand transfer.
    Purohit V; Balakrishnan M; Kim B; Bambara RA
    J Biol Chem; 2005 Dec; 280(49):40534-43. PubMed ID: 16221683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the multiple roles of pausing in HIV-1 reverse transcriptase-promoted strand transfers.
    Gao L; Balakrishnan M; Roques BP; Bambara RA
    J Biol Chem; 2007 Mar; 282(9):6222-31. PubMed ID: 17204480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro analysis of human immunodeficiency virus type 1 minus-strand strong-stop DNA synthesis and genomic RNA processing.
    Driscoll MD; Golinelli MP; Hughes SH
    J Virol; 2001 Jan; 75(2):672-86. PubMed ID: 11134281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pausing by retroviral DNA polymerases promotes strand transfer from internal regions of RNA donor templates to homopolymeric acceptor templates.
    Buiser RG; Bambara RA; Fay PJ
    Biochim Biophys Acta; 1993 Oct; 1216(1):20-30. PubMed ID: 7692974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced dNTP interaction of human immunodeficiency virus type 1 reverse transcriptase promotes strand transfer.
    Operario DJ; Balakrishnan M; Bambara RA; Kim B
    J Biol Chem; 2006 Oct; 281(43):32113-21. PubMed ID: 16926150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Misincorporation by HIV-1 reverse transcriptase promotes recombination via strand transfer synthesis.
    Palaniappan C; Wisniewski M; Wu W; Fay PJ; Bambara RA
    J Biol Chem; 1996 Sep; 271(37):22331-8. PubMed ID: 8798393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Template dimerization promotes an acceptor invasion-induced transfer mechanism during human immunodeficiency virus type 1 minus-strand synthesis.
    Balakrishnan M; Roques BP; Fay PJ; Bambara RA
    J Virol; 2003 Apr; 77(8):4710-21. PubMed ID: 12663778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a unique mechanism of strand transfer from the transactivation response region of HIV-1.
    Kim JK; Palaniappan C; Wu W; Fay PJ; Bambara RA
    J Biol Chem; 1997 Jul; 272(27):16769-77. PubMed ID: 9201981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Template-primer binding affinity and RNase H cleavage specificity contribute to the strand transfer efficiency of HIV-1 reverse transcriptase.
    Luczkowiak J; Matamoros T; Menéndez-Arias L
    J Biol Chem; 2018 Aug; 293(35):13351-13363. PubMed ID: 29991591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc finger domain of murine leukemia virus nucleocapsid protein enhances the rate of viral DNA synthesis in vivo.
    Zhang WH; Hwang CK; Hu WS; Gorelick RJ; Pathak VK
    J Virol; 2002 Aug; 76(15):7473-84. PubMed ID: 12097560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strand transfer events during HIV-1 reverse transcription.
    Basu VP; Song M; Gao L; Rigby ST; Hanson MN; Bambara RA
    Virus Res; 2008 Jun; 134(1-2):19-38. PubMed ID: 18279992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide excision repair and template-independent addition by HIV-1 reverse transcriptase in the presence of nucleocapsid protein.
    Bampi C; Bibillo A; Wendeler M; Divita G; Gorelick RJ; Le Grice SF; Darlix JL
    J Biol Chem; 2006 Apr; 281(17):11736-43. PubMed ID: 16500895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single unpaired nucleotides facilitate HIV-1 reverse transcriptase displacement synthesis through duplex RNA.
    Lanciault C; Champoux JJ
    J Biol Chem; 2004 Jul; 279(31):32252-61. PubMed ID: 15169769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA motifs mediating in vivo site-specific nonhomologous recombination in (+) RNA virus enforce in vitro nonhomologous crossovers with HIV-1 reverse transcriptase.
    Figlerowicz M; Bibiłło A
    RNA; 2000 Mar; 6(3):339-51. PubMed ID: 10744019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acceptor RNA cleavage profile supports an invasion mechanism for HIV-1 minus strand transfer.
    Chen Y; Balakrishnan M; Roques BP; Bambara RA
    J Biol Chem; 2005 Apr; 280(15):14443-52. PubMed ID: 15657044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.