BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 12802003)

  • 1. Blood flow quantification with contrast-enhanced US: "entrance in the section" phenomenon--phantom and rabbit study.
    Lucidarme O; Franchi-Abella S; Correas JM; Bridal SL; Kurtisovski E; Berger G
    Radiology; 2003 Aug; 228(2):473-9. PubMed ID: 12802003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Science to practice: blood flow quantification with contrast-enhanced US: "entrance in the section" phenomenon--phantom and rabbit study.
    Kruskal JB
    Radiology; 2003 Aug; 228(2):298-9. PubMed ID: 12893890
    [No Abstract]   [Full Text] [Related]  

  • 3. Renal blood flow quantification in pigs using contrast-enhanced ultrasound: an ex vivo study.
    Hoeffel C; Mulé S; Huwart L; Frouin F; Jais JP; Helenon O; Correas JM
    Ultraschall Med; 2010 Aug; 31(4):363-9. PubMed ID: 20408121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined perfusion and doppler imaging using plane-wave nonlinear detection and microbubble contrast agents.
    Tremblay-Darveau C; Williams R; Milot L; Bruce M; Burns PN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Dec; 61(12):1988-2000. PubMed ID: 25474775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Determination of the renal blood flow in macro- and microcirculation by means of pulse inversion imaging].
    Schlosser T; Veltmann C; Lohmaier S; Ehlgen A; Kuntz-Hehner S; Tiemann K; Becher H
    Rofo; 2004 May; 176(5):724-30. PubMed ID: 15122472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subharmonic imaging with microbubble contrast agents: initial results.
    Shi WT; Forsberg F; Hall AL; Chiao RY; Liu JB; Miller S; Thomenius KE; Wheatley MA; Goldberg BB
    Ultrason Imaging; 1999 Apr; 21(2):79-94. PubMed ID: 10485563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct and Doppler angle-independent measurement of blood flow velocity in small-diameter vessels using ultrasound microbubbles.
    Roy HS; Zuo G; Luo Z; Wu H; Krupka TM; Ran H; Li P; Sun Y; Wang Z; Zheng Y
    Clin Imaging; 2012; 36(5):577-83. PubMed ID: 22920365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo perfusion estimation using subharmonic contrast microbubble signals.
    Forsberg F; Liu JB; Shi WT; Ro R; Lipcan KJ; Deng X; Hall AL
    J Ultrasound Med; 2006 Jan; 25(1):15-21. PubMed ID: 16371551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speckle decorrelation flow measurement with B-mode US of contrast agent flow in a phantom and in rabbit kidney.
    Rubin JM; Fowlkes JB; Tuthill TA; Moskalik AP; Rhee RT; Adler RS; Kazanjian SN; Carson PL
    Radiology; 1999 Nov; 213(2):429-37. PubMed ID: 10551223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow quantification with nakagami parametric imaging for suppressing contrast microbubbles attenuation.
    Gu X; Wei M; Zong Y; Jiang H; Wan M
    Ultrasound Med Biol; 2013 Apr; 39(4):660-9. PubMed ID: 23384469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of a new mathematical model for the computation of numerical parameters related to renal cortical blood flow and fractional blood volume by contrast-enhanced ultrasound.
    Quaia E; Nocentini A; Torelli L
    Ultrasound Med Biol; 2009 Apr; 35(4):616-27. PubMed ID: 19193486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microvascular flow estimation by microbubble-assisted Nakagami imaging.
    Tsui PH; Yeh CK; Chang CC
    Ultrasound Med Biol; 2009 Apr; 35(4):653-71. PubMed ID: 19097684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of the flash-replenishment concept in renal tissue: which parameters affect the assessment of the contrast replenishment?
    Schlosser T; Pohl C; Veltmann C; Lohmaier S; Goenechea J; Ehlgen A; Köster J; Bimmel D; Kuntz-Hehner S; Becher H; Tiemann K
    Ultrasound Med Biol; 2001 Jul; 27(7):937-44. PubMed ID: 11476928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volumetric contrast-enhanced ultrasound imaging of renal perfusion.
    Mahoney M; Sorace A; Warram J; Samuel S; Hoyt K
    J Ultrasound Med; 2014 Aug; 33(8):1427-37. PubMed ID: 25063408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of flow using ultrasound and microbubbles: a disruption replenishment model based on physical principles.
    Hudson JM; Karshafian R; Burns PN
    Ultrasound Med Biol; 2009 Dec; 35(12):2007-20. PubMed ID: 19822390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution functional vascular assessment with ultrasound.
    Yeh CK; Ferrara KW; Kruse DE
    IEEE Trans Med Imaging; 2004 Oct; 23(10):1263-75. PubMed ID: 15493694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved flow measurement using microbubble contrast agents and disruption-replenishment: clinical application to tumour monitoring.
    Hudson JM; Williams R; Lloyd B; Atri M; Kim TK; Bjarnason G; Burns PN
    Ultrasound Med Biol; 2011 Aug; 37(8):1210-21. PubMed ID: 21683508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concepts and Tradeoffs in Velocity Estimation With Plane-Wave Contrast-Enhanced Doppler.
    Tremblay-Darveau C; Williams R; Sheeran PS; Milot L; Bruce M; Burns PN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Nov; 63(11):1890-1905. PubMed ID: 27824566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualizing the Tumor Microvasculature With a Nonlinear Plane-Wave Doppler Imaging Scheme Based on Amplitude Modulation.
    Tremblay-Darveau C; Williams R; Milot L; Bruce M; Burns PN
    IEEE Trans Med Imaging; 2016 Feb; 35(2):699-709. PubMed ID: 26485609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refill model of rabbit kidney vasculature.
    Potdevin TC; Fowlkes JB; Moskalik AP; Carson PL
    Ultrasound Med Biol; 2006 Sep; 32(9):1331-8. PubMed ID: 16965973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.