BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 12802335)

  • 41. Aberrant CFTR-dependent HCO3- transport in mutations associated with cystic fibrosis.
    Choi JY; Muallem D; Kiselyov K; Lee MG; Thomas PJ; Muallem S
    Nature; 2001 Mar; 410(6824):94-7. PubMed ID: 11242048
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ca2+ activates cystic fibrosis transmembrane conductance regulator- and Cl- -dependent HCO3 transport in pancreatic duct cells.
    Namkung W; Lee JA; Ahn W; Han W; Kwon SW; Ahn DS; Kim KH; Lee MG
    J Biol Chem; 2003 Jan; 278(1):200-7. PubMed ID: 12409301
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The non-hydrolytic pathway of cystic fibrosis transmembrane conductance regulator ion channel gating.
    Aleksandrov AA; Chang X; Aleksandrov L; Riordan JR
    J Physiol; 2000 Oct; 528 Pt 2(Pt 2):259-65. PubMed ID: 11034616
    [TBL] [Abstract][Full Text] [Related]  

  • 44. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).
    Zwick M; Esposito C; Hellstern M; Seelig A
    J Biol Chem; 2016 Jul; 291(28):14483-98. PubMed ID: 27226582
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Activation of the cystic fibrosis transmembrane conductance regulator by the flavonoid quercetin: potential use as a biomarker of ΔF508 cystic fibrosis transmembrane conductance regulator rescue.
    Pyle LC; Fulton JC; Sloane PA; Backer K; Mazur M; Prasain J; Barnes S; Clancy JP; Rowe SM
    Am J Respir Cell Mol Biol; 2010 Nov; 43(5):607-16. PubMed ID: 20042712
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of the gating of cystic fibrosis transmembrane conductance regulator C1 channels by phosphorylation and ATP hydrolysis.
    Hwang TC; Nagel G; Nairn AC; Gadsby DC
    Proc Natl Acad Sci U S A; 1994 May; 91(11):4698-702. PubMed ID: 7515176
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anion selectivity of apical membrane conductance of Calu 3 human airway epithelium.
    Illek B; Tam AW; Fischer H; Machen TE
    Pflugers Arch; 1999 May; 437(6):812-22. PubMed ID: 10370058
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The gating of the CFTR channel.
    Moran O
    Cell Mol Life Sci; 2017 Jan; 74(1):85-92. PubMed ID: 27696113
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dual effects of ADP and adenylylimidodiphosphate on CFTR channel kinetics show binding to two different nucleotide binding sites.
    Weinreich F; Riordan JR; Nagel G
    J Gen Physiol; 1999 Jul; 114(1):55-70. PubMed ID: 10398692
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Apical heterotrimeric g-proteins activate CFTR in the native sweat duct.
    Reddy MM; Sun D; Quinton PM
    J Membr Biol; 2001 Jan; 179(1):51-61. PubMed ID: 11155209
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Involvement of CFTR in oviductal HCO3- secretion and its effect on soluble adenylate cyclase-dependent early embryo development.
    Chen MH; Chen H; Zhou Z; Ruan YC; Wong HY; Lu YC; Guo JH; Chung YW; Huang PB; Huang HF; Zhou WL; Chan HC
    Hum Reprod; 2010 Jul; 25(7):1744-54. PubMed ID: 20406739
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pore dilatation increases the bicarbonate permeability of CFTR, ANO1 and glycine receptor anion channels.
    Jun I; Cheng MH; Sim E; Jung J; Suh BL; Kim Y; Son H; Park K; Kim CH; Yoon JH; Whitcomb DC; Bahar I; Lee MG
    J Physiol; 2016 Jun; 594(11):2929-55. PubMed ID: 26663196
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carbon monoxide-releasing molecules inhibit the cystic fibrosis transmembrane conductance regulator Cl
    Rodrat M; Jantarajit W; Ng DRS; Harvey BSJ; Liu J; Wilkinson WJ; Charoenphandhu N; Sheppard DN
    Am J Physiol Lung Cell Mol Physiol; 2020 Dec; 319(6):L997-L1009. PubMed ID: 32936026
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anion conductance selectivity mechanism of the CFTR chloride channel.
    Linsdell P
    Biochim Biophys Acta; 2016 Apr; 1858(4):740-7. PubMed ID: 26779604
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Curcumin stimulates cystic fibrosis transmembrane conductance regulator Cl- channel activity.
    Berger AL; Randak CO; Ostedgaard LS; Karp PH; Vermeer DW; Welsh MJ
    J Biol Chem; 2005 Feb; 280(7):5221-6. PubMed ID: 15582996
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Polystyrene nanoparticles activate ion transport in human airway epithelial cells.
    McCarthy J; Gong X; Nahirney D; Duszyk M; Radomski M
    Int J Nanomedicine; 2011; 6():1343-56. PubMed ID: 21760729
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulation of Cl-/ HCO3- exchange by cystic fibrosis transmembrane conductance regulator expressed in NIH 3T3 and HEK 293 cells.
    Lee MG; Wigley WC; Zeng W; Noel LE; Marino CR; Thomas PJ; Muallem S
    J Biol Chem; 1999 Feb; 274(6):3414-21. PubMed ID: 9920885
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The CFTR ion channel: gating, regulation, and anion permeation.
    Hwang TC; Kirk KL
    Cold Spring Harb Perspect Med; 2013 Jan; 3(1):a009498. PubMed ID: 23284076
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of pyrophosphate and nucleotide analogs suggest a role for ATP hydrolysis in cystic fibrosis transmembrane regulator channel gating.
    Gunderson KL; Kopito RR
    J Biol Chem; 1994 Jul; 269(30):19349-53. PubMed ID: 7518455
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Slow conversions among subconductance states of cystic fibrosis transmembrane conductance regulator chloride channel.
    Tao T; Xie J; Drumm ML; Zhao J; Davis PB; Ma J
    Biophys J; 1996 Feb; 70(2):743-53. PubMed ID: 8789091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.