BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 12802335)

  • 61. Chemical rescue of ΔF508-CFTR in C127 epithelial cells reverses aberrant extracellular pH acidification to wild-type alkalization as monitored by microphysiometry.
    Luckie DB; Van Alst AJ; Massey MK; Flood RD; Shah AA; Malhotra V; Kozel BJ
    Biochem Biophys Res Commun; 2014 Sep; 451(4):535-40. PubMed ID: 25130467
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Adenosine triphosphate-dependent asymmetry of anion permeation in the cystic fibrosis transmembrane conductance regulator chloride channel.
    Linsdell P; Hanrahan JW
    J Gen Physiol; 1998 Apr; 111(4):601-14. PubMed ID: 9524141
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Regulation of CFTR Bicarbonate Channel Activity by WNK1: Implications for Pancreatitis and CFTR-Related Disorders.
    Kim Y; Jun I; Shin DH; Yoon JG; Piao H; Jung J; Park HW; Cheng MH; Bahar I; Whitcomb DC; Lee MG
    Cell Mol Gastroenterol Hepatol; 2020; 9(1):79-103. PubMed ID: 31561038
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cytosolic pH regulates GCl through control of phosphorylation states of CFTR.
    Reddy MM; Kopito RR; Quinton PM
    Am J Physiol; 1998 Oct; 275(4):C1040-7. PubMed ID: 9755057
    [TBL] [Abstract][Full Text] [Related]  

  • 65. 5'-Adenylylimidodiphosphate does not activate CFTR chloride channels in cell-free patches of membrane.
    Carson MR; Welsh MJ
    Am J Physiol; 1993 Jul; 265(1 Pt 1):L27-32. PubMed ID: 7687826
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Physiology and pathophysiology of bicarbonate secretion by pancreatic duct epithelium.
    Ishiguro H; Yamamoto A; Nakakuki M; Yi L; Ishiguro M; Yamaguchi M; Kondo S; Mochimaru Y
    Nagoya J Med Sci; 2012 Feb; 74(1-2):1-18. PubMed ID: 22515107
    [TBL] [Abstract][Full Text] [Related]  

  • 67. ATPase activity of the cystic fibrosis transmembrane conductance regulator.
    Li C; Ramjeesingh M; Wang W; Garami E; Hewryk M; Lee D; Rommens JM; Galley K; Bear CE
    J Biol Chem; 1996 Nov; 271(45):28463-8. PubMed ID: 8910473
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nucleoside triphosphate pentose ring impact on CFTR gating and hydrolysis.
    Aleksandrov AA; Aleksandrov L; Riordan JR
    FEBS Lett; 2002 May; 518(1-3):183-8. PubMed ID: 11997043
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Distinct Mg(2+)-dependent steps rate limit opening and closing of a single CFTR Cl(-) channel.
    Dousmanis AG; Nairn AC; Gadsby DC
    J Gen Physiol; 2002 Jun; 119(6):545-59. PubMed ID: 12034762
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effect of phenol red and steroid hormones on cystic fibrosis transmembrane conductance regulator in mouse endometrial epithelial cells.
    Tsang LL; Chan LN; Liu CQ; Chan HC
    Cell Biol Int; 2001; 25(10):1021-4. PubMed ID: 11589621
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Function of the R domain in the cystic fibrosis transmembrane conductance regulator chloride channel.
    Ma J; Zhao J; Drumm ML; Xie J; Davis PB
    J Biol Chem; 1997 Oct; 272(44):28133-41. PubMed ID: 9346969
    [TBL] [Abstract][Full Text] [Related]  

  • 72. ATP hydrolysis-dependent asymmetry of the conformation of CFTR channel pore.
    Krasilnikov OV; Sabirov RZ; Okada Y
    J Physiol Sci; 2011 Jul; 61(4):267-78. PubMed ID: 21461971
    [TBL] [Abstract][Full Text] [Related]  

  • 73. CFTR, a rectifying, non-rectifying anion channel?
    Quinton PM; Reddy MM
    J Korean Med Sci; 2000 Aug; 15 Suppl(Suppl):S17-20. PubMed ID: 10981500
    [No Abstract]   [Full Text] [Related]  

  • 74. Alcohol disrupts levels and function of the cystic fibrosis transmembrane conductance regulator to promote development of pancreatitis.
    Maléth J; Balázs A; Pallagi P; Balla Z; Kui B; Katona M; Judák L; Németh I; Kemény LV; Rakonczay Z; Venglovecz V; Földesi I; Pető Z; Somorácz Á; Borka K; Perdomo D; Lukacs GL; Gray MA; Monterisi S; Zaccolo M; Sendler M; Mayerle J; Kühn JP; Lerch MM; Sahin-Tóth M; Hegyi P
    Gastroenterology; 2015 Feb; 148(2):427-39.e16. PubMed ID: 25447846
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Genetic disorders of membrane transport. II. Regulation of CFTR by small molecules including HCO3-.
    Illek B; Fischer H; Machen TE
    Am J Physiol; 1998 Dec; 275(6):G1221-6. PubMed ID: 9843756
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Molecular pathology of the R117H cystic fibrosis mutation is explained by loss of a hydrogen bond.
    Simon MA; Csanády L
    Elife; 2021 Dec; 10():. PubMed ID: 34870594
    [TBL] [Abstract][Full Text] [Related]  

  • 77. cAMP-independent phosphorylation activation of CFTR by G proteins in native human sweat duct.
    Reddy MM; Quinton PM
    Am J Physiol Cell Physiol; 2001 Mar; 280(3):C604-13. PubMed ID: 11171580
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Parathyroid hormone increases CFTR expression and function in Caco-2 intestinal epithelial cells.
    Jantarajit W; Wongdee K; Lertsuwan K; Teerapornpuntakit J; Aeimlapa R; Thongbunchoo J; Harvey BSJ; Sheppard DN; Charoenphandhu N
    Biochem Biophys Res Commun; 2020 Mar; 523(3):816-821. PubMed ID: 31954520
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Oxidative stress caused by pyocyanin impairs CFTR Cl(-) transport in human bronchial epithelial cells.
    Schwarzer C; Fischer H; Kim EJ; Barber KJ; Mills AD; Kurth MJ; Gruenert DC; Suh JH; Machen TE; Illek B
    Free Radic Biol Med; 2008 Dec; 45(12):1653-62. PubMed ID: 18845244
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Most bicarbonate secretion by Calu-3 cells is mediated by CFTR and independent of pendrin.
    Huang J; Kim D; Shan J; Abu-Arish A; Luo Y; Hanrahan JW
    Physiol Rep; 2018 Mar; 6(5):. PubMed ID: 29536650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.