BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

522 related articles for article (PubMed ID: 12802338)

  • 1. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate.
    Salmeen A; Andersen JN; Myers MP; Meng TC; Hinks JA; Tonks NK; Barford D
    Nature; 2003 Jun; 423(6941):769-73. PubMed ID: 12802338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B.
    van Montfort RL; Congreve M; Tisi D; Carr R; Jhoti H
    Nature; 2003 Jun; 423(6941):773-7. PubMed ID: 12802339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation.
    Denu JM; Tanner KG
    Biochemistry; 1998 Apr; 37(16):5633-42. PubMed ID: 9548949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox regulation of protein tyrosine phosphatase 1B (PTP1B): a biomimetic study on the unexpected formation of a sulfenyl amide intermediate.
    Sarma BK; Mugesh G
    J Am Chem Soc; 2007 Jul; 129(28):8872-81. PubMed ID: 17585764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A chemical model for redox regulation of protein tyrosine phosphatase 1B (PTP1B) activity.
    Sivaramakrishnan S; Keerthi K; Gates KS
    J Am Chem Soc; 2005 Aug; 127(31):10830-1. PubMed ID: 16076179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible oxidation of the membrane distal domain of receptor PTPalpha is mediated by a cyclic sulfenamide.
    Yang J; Groen A; Lemeer S; Jans A; Slijper M; Roe SM; den Hertog J; Barford D
    Biochemistry; 2007 Jan; 46(3):709-19. PubMed ID: 17223692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic and chemical competence of regulation of cdc25 phosphatase by oxidation/reduction.
    Sohn J; Rudolph J
    Biochemistry; 2003 Sep; 42(34):10060-70. PubMed ID: 12939134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic inactivation of protein tyrosine phosphatase CD45 and protein tyrosine phosphatase 1B by polyaromatic quinones.
    Wang Q; Dubé D; Friesen RW; LeRiche TG; Bateman KP; Trimble L; Sanghara J; Pollex R; Ramachandran C; Gresser MJ; Huang Z
    Biochemistry; 2004 Apr; 43(14):4294-303. PubMed ID: 15065873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of PTP1B via glutathionylation of the active site cysteine 215.
    Barrett WC; DeGnore JP; König S; Fales HM; Keng YF; Zhang ZY; Yim MB; Chock PB
    Biochemistry; 1999 May; 38(20):6699-705. PubMed ID: 10350489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox regulation of MAP kinase phosphatase 3.
    Seth D; Rudolph J
    Biochemistry; 2006 Jul; 45(28):8476-87. PubMed ID: 16834321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calpain-mediated degradation of reversibly oxidized protein-tyrosine phosphatase 1B.
    Trümpler A; Schlott B; Herrlich P; Greer PA; Böhmer FD
    FEBS J; 2009 Oct; 276(19):5622-33. PubMed ID: 19712109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Singlet oxygen inactivates protein tyrosine phosphatase-1B by oxidation of the active site cysteine.
    von Montfort C; Sharov VS; Metzger S; Schöneich C; Sies H; Klotz LO
    Biol Chem; 2006; 387(10-11):1399-404. PubMed ID: 17081112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox regulation of the protein tyrosine phosphatase PTP1B in cancer cells.
    Lou YW; Chen YY; Hsu SF; Chen RK; Lee CL; Khoo KH; Tonks NK; Meng TC
    FEBS J; 2008 Jan; 275(1):69-88. PubMed ID: 18067579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of phosphocaveolin-1 as a novel protein tyrosine phosphatase 1B substrate.
    Lee H; Xie L; Luo Y; Lee SY; Lawrence DS; Wang XB; Sotgia F; Lisanti MP; Zhang ZY
    Biochemistry; 2006 Jan; 45(1):234-40. PubMed ID: 16388599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a robust scintillation proximity assay for protein tyrosine phosphatase 1B using the catalytically inactive (C215S) mutant.
    Skorey KI; Kennedy BP; Friesen RW; Ramachandran C
    Anal Biochem; 2001 Apr; 291(2):269-78. PubMed ID: 11401301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfone-stabilized carbanions for the reversible covalent capture of a posttranslationally-generated cysteine oxoform found in protein tyrosine phosphatase 1B (PTP1B).
    Parsons ZD; Ruddraraju KV; Santo N; Gates KS
    Bioorg Med Chem; 2016 Jun; 24(12):2631-40. PubMed ID: 27132865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residue 259 in protein-tyrosine phosphatase PTP1B and PTPalpha determines the flexibility of glutamine 262.
    Peters GH; Iversen LF; Andersen HS; Møller NP; Olsen OH
    Biochemistry; 2004 Jul; 43(26):8418-28. PubMed ID: 15222753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preferential redox regulation of cysteine-based protein tyrosine phosphatases: structural and biochemical diversity.
    Netto LES; Machado LESF
    FEBS J; 2022 Sep; 289(18):5480-5504. PubMed ID: 35490402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum.
    Haj FG; Verveer PJ; Squire A; Neel BG; Bastiaens PI
    Science; 2002 Mar; 295(5560):1708-11. PubMed ID: 11872838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of tumor necrosis factor-alpha on the phosphorylation of tyrosine kinase receptors is associated with dynamic alterations in specific protein-tyrosine phosphatases.
    Ahmad F; Goldstein BJ
    J Cell Biochem; 1997 Jan; 64(1):117-27. PubMed ID: 9015760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.