BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1005 related articles for article (PubMed ID: 12802579)

  • 1. In vitro relaxation of vascular smooth muscle by atropine: involvement of K+ channels and endothelium.
    Kwan CY; Zhang WB; Kwan TK; Sakai Y
    Naunyn Schmiedebergs Arch Pharmacol; 2003 Jul; 368(1):1-9. PubMed ID: 12802579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery.
    White R; Hiley CR
    Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascular effects of Siberian ginseng (Eleutherococcus senticosus): endothelium-dependent NO- and EDHF-mediated relaxation depending on vessel size.
    Kwan CY; Zhang WB; Sim SM; Deyama T; Nishibe S
    Naunyn Schmiedebergs Arch Pharmacol; 2004 May; 369(5):473-80. PubMed ID: 15095033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF.
    Zygmunt PM; Plane F; Paulsson M; Garland CJ; Högestätt ED
    Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelium-dependent and -independent vasorelaxation induced by CIJ-3-2F, a novel benzyl-furoquinoline with antiarrhythmic action, in rat aorta.
    Chang GJ; Lin TP; Ko YS; Lin MS
    Life Sci; 2010 Jun; 86(23-24):869-79. PubMed ID: 20388521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple mechanisms of vascular smooth muscle relaxation by the activation of proteinase-activated receptor 2 in mouse mesenteric arterioles.
    McGuire JJ; Hollenberg MD; Andrade-Gordon P; Triggle CR
    Br J Pharmacol; 2002 Jan; 135(1):155-69. PubMed ID: 11786491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive increases in expression and vasodilator activity of estrogen receptor subtypes in a blood vessel-specific pattern during pregnancy.
    Mata KM; Li W; Reslan OM; Siddiqui WT; Opsasnick LA; Khalil RA
    Am J Physiol Heart Circ Physiol; 2015 Nov; 309(10):H1679-96. PubMed ID: 26408543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms underlying the endothelium-independent relaxation induced by angiotensin II in rat aorta.
    Fukada SY; Tirapelli CR; de Godoy MA; de Oliveira AM
    J Cardiovasc Pharmacol; 2005 Feb; 45(2):136-43. PubMed ID: 15654262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of nitric oxide and K+ channel activation to vasorelaxation of isolated rat aorta induced by procaine.
    Huang Y; Lau CW; Chan FL; Yao XQ
    Eur J Pharmacol; 1999 Feb; 367(2-3):231-7. PubMed ID: 10078997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D; Simonsen U; Hernández M; García-Sacristán A
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelium-dependent vascular relaxation induced by Eucommia ulmoides Oliv. bark extract is mediated by NO and EDHF in small vessels.
    Kwan CY; Zhang WB; Deyama T; Nishibe S
    Naunyn Schmiedebergs Arch Pharmacol; 2004 Feb; 369(2):206-11. PubMed ID: 14673511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxylamine-induced relaxation inhibited by K+ channel blockers in rat aortic rings.
    Huang Y
    Eur J Pharmacol; 1998 May; 349(1):53-60. PubMed ID: 9669496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery.
    Dong H; Waldron GJ; Cole WC; Triggle CR
    Br J Pharmacol; 1998 Mar; 123(5):821-32. PubMed ID: 9535009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of endothelium in relaxant action of glibenclamide on the rat mesenteric artery.
    Huang Y; Chan NW
    Eur J Pharmacol; 1998 Feb; 343(1):27-33. PubMed ID: 9551711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycyrrhetinic acid-sensitive mechanism does not make a major contribution to non-prostanoid, non-nitric oxide mediated endothelium-dependent relaxation of rat mesenteric artery in response to acetylcholine.
    Tanaka Y; Otsuka A; Tanaka H; Shigenobu K
    Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):227-39. PubMed ID: 10509734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide-dependent and -independent mechanisms in the relaxation elicited by acetylcholine in fetal rat aorta.
    Martínez-Orgado J; González R; Alonso MJ; Marín J
    Life Sci; 1999; 64(4):269-77. PubMed ID: 10027761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clonidine induces rat aorta relaxation by nitric oxide-dependent and -independent mechanisms.
    Molin JC; Bendhack LM
    Vascul Pharmacol; 2004 Aug; 42(1):1-6. PubMed ID: 15664881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A xanthine-based KMUP-1 with cyclic GMP enhancing and K(+) channels opening activities in rat aortic smooth muscle.
    Wu BN; Lin RJ; Lin CY; Shen KP; Chiang LC; Chen IJ
    Br J Pharmacol; 2001 Sep; 134(2):265-74. PubMed ID: 11564644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NO/PGI2-independent vasorelaxation and the cytochrome P450 pathway in rabbit carotid artery.
    Dong H; Waldron GJ; Galipeau D; Cole WC; Triggle CR
    Br J Pharmacol; 1997 Feb; 120(4):695-701. PubMed ID: 9051310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of endothelium and K+ channels in dobutamine-induced relaxation in rat mesenteric artery.
    Huang Y; Kwok KH; Chan NW; Lau CW; Chen ZY
    Clin Exp Pharmacol Physiol; 1998 Jun; 25(6):405-11. PubMed ID: 9673814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 51.