These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 12803295)

  • 81. Clinical evaluation of USCOM ultrasonic cardiac output monitor in cardiac surgical patients in intensive care unit.
    Tan HL; Pinder M; Parsons R; Roberts B; van Heerden PV
    Br J Anaesth; 2005 Mar; 94(3):287-91. PubMed ID: 15653709
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Electrical velocimetry for measuring cardiac output in children with congenital heart disease.
    Norozi K; Beck C; Osthaus WA; Wille I; Wessel A; Bertram H
    Br J Anaesth; 2008 Jan; 100(1):88-94. PubMed ID: 18024954
    [TBL] [Abstract][Full Text] [Related]  

  • 83. [Impedance cardiography and cardiac output].
    Mikami T; Miyamoto Y
    Rinsho Byori; 1983 Oct; Spec No 57():30-42. PubMed ID: 6371320
    [No Abstract]   [Full Text] [Related]  

  • 84. Development of a miniature and ASIC based impedance cardiograph.
    Jethe JV; Ananthakrishnan TS; Jindal GD
    J Med Eng Technol; 2020 Jan; 44(1):20-25. PubMed ID: 31939692
    [TBL] [Abstract][Full Text] [Related]  

  • 85. [Clinical application of the electric cardiometry based non-invasive ICON® hemodynamic monitor].
    Zakariás D; Marics G; Kovács K; Jermendy Á; Vatai B; Schuster G; Tóth-Heyn P; Szabó J A; Lódi C
    Orv Hetil; 2018 Nov; 159(44):1775-1781. PubMed ID: 30392409
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Comparison between an uncalibrated pulse contour method and thermodilution technique for cardiac output estimation in septic patients.
    Franchi F; Silvestri R; Cubattoli L; Taccone FS; Donadello K; Romano SM; Giomarelli P; McBride WT; Scolletta S
    Br J Anaesth; 2011 Aug; 107(2):202-8. PubMed ID: 21665901
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Comparison of cardiac output determined by bioimpedance, thermodilution, and the Fick method.
    Engoren M; Barbee D
    Am J Crit Care; 2005 Jan; 14(1):40-5. PubMed ID: 15608107
    [TBL] [Abstract][Full Text] [Related]  

  • 88. AANA Journal course: new technologies in anesthesia: update for nurse anesthetists--noninvasive, continuous, cardiac output monitoring by thoracic electrical bioimpedance. 16.
    Atkins CS
    AANA J; 1991 Oct; 59(5):445-52. PubMed ID: 1957569
    [TBL] [Abstract][Full Text] [Related]  

  • 89. A comparison between the transthoracic electrical impedance method and the direct Fick and the dye dilution methods for cardiac output measurements in man.
    Enghoff E; Lövheim O
    Scand J Clin Lab Invest; 1979 Oct; 39(6):585-90. PubMed ID: 394295
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Bernstein-Osypka stroke volume equation for impedance cardiography: citation correction.
    Bernstein DP
    Intensive Care Med; 2007 May; 33(5):923. PubMed ID: 17387452
    [No Abstract]   [Full Text] [Related]  

  • 91. Comparison of electrical velocimetry and cardiac magnetic resonance imaging for the non-invasive determination of cardiac output.
    Trinkmann F; Berger M; Doesch C; Papavassiliu T; Schoenberg SO; Borggrefe M; Kaden JJ; Saur J
    J Clin Monit Comput; 2016 Aug; 30(4):399-408. PubMed ID: 26115774
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Feasibility of non-invasive cardiac output monitoring at birth using electrical bioreactance in term infants.
    McCarthy KN; Pavel A; Garvey AA; Hawke AL; Levins C; Livingstone V; Dempsey EM
    Arch Dis Child Fetal Neonatal Ed; 2021 Jul; 106(4):431-434. PubMed ID: 33272934
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Adaptive filtering for suppression of respiratory artifact in impedance cardiography.
    Pandey VK; Pandey PC; Burkule NJ; Subramanyan LR
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7932-6. PubMed ID: 22256180
    [TBL] [Abstract][Full Text] [Related]  

  • 94. GRU Neural Network Improved Bioimpedance Based Stroke Volume Estimation during Ergometry Stress Test.
    Urban M; Klum M; Pielmus AG; Liebrenz F; Mann S; Tigges T; Orglmeister R
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298239
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A computerized bioelectrical cardiac monitor.
    Jossinet J; Leftheriotis G; Vernier F; Saumet JL
    Comput Biol Med; 1990; 20(4):253-60. PubMed ID: 2225782
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Signal processing techniques applied to impedance cardiography ICG signals - a review.
    Chabchoub S; Mansouri S; Ben Salah R
    J Med Eng Technol; 2022 Apr; 46(3):243-260. PubMed ID: 35040738
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Large-scale ensemble averaging of ambulatory impedance cardiograms.
    Riese H; Groot PF; van den Berg M; Kupper NH; Magnee EH; Rohaan EJ; Vrijkotte TG; Willemsen G; de Geus EJ
    Behav Res Methods Instrum Comput; 2003 Aug; 35(3):467-77. PubMed ID: 14587556
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Combined impedance and inductance for the detection of apnoea of prematurity.
    Upton CJ; Milner AD; Stokes GM
    Early Hum Dev; 1990 Oct; 24(1):55-63. PubMed ID: 2265599
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Dynamic powerline interference subtraction from biosignals.
    Christov II
    J Med Eng Technol; 2000; 24(4):169-72. PubMed ID: 11105290
    [TBL] [Abstract][Full Text] [Related]  

  • 100. An electronic simulator for testing infant apnoea monitors that uses actual physiologic data.
    Zoldak JT; Watson HL; Bolduc DB; DiFiore JM; Mendenhall RS; Peucker M; Neuman MR;
    Physiol Meas; 2001 May; 22(2):N1-12. PubMed ID: 11411251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.