These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 1280369)

  • 1. Carbohydrate assimilation by saccharolytic clostridia.
    Mitchell WJ
    Res Microbiol; 1992; 143(3):245-50. PubMed ID: 1280369
    [No Abstract]   [Full Text] [Related]  

  • 2. Note: sucrose transport and metabolism in Clostridium beijerinckii NCIMB 8052.
    Tangney M; Rousse C; Yazdanian M; Mitchell WJ
    J Appl Microbiol; 1998 May; 84(5):914-9. PubMed ID: 9674147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence of Methanobacterium thermoautotrophicum.
    Weimer PJ; Zeikus JG
    Appl Environ Microbiol; 1977 Feb; 33(2):289-97. PubMed ID: 848953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xylan and cellulose utilization by the clostridia.
    Hazlewood GP; Gilbert HJ
    Biotechnology; 1993; 25():311-41. PubMed ID: 8400790
    [No Abstract]   [Full Text] [Related]  

  • 5. [Cellulose hydrolysis and ethanol production by a facultative anaerobe bacteria consortium H and its identification].
    Du R; Li S; Zhang X; Wang L
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):960-5. PubMed ID: 20954397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saccharification of polysaccharide content of palm kernel cake using enzymatic catalysis for production of biobutanol in acetone-butanol-ethanol fermentation.
    Shukor H; Abdeshahian P; Al-Shorgani NK; Hamid AA; Rahman NA; Kalil MS
    Bioresour Technol; 2016 Feb; 202():206-13. PubMed ID: 26710346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulolytic and physiological properties of Clostridium thermocellum.
    Ng TK; Weimer TK; Zeikus JG
    Arch Microbiol; 1977 Jul; 114(1):1-7. PubMed ID: 20860
    [No Abstract]   [Full Text] [Related]  

  • 8. Cellulase, clostridia, and ethanol.
    Demain AL; Newcomb M; Wu JH
    Microbiol Mol Biol Rev; 2005 Mar; 69(1):124-54. PubMed ID: 15755956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life in mucus: sugar metabolism in Haemophilus influenzae.
    Macfadyen LP; Redfield RJ
    Res Microbiol; 1996; 147(6-7):541-51. PubMed ID: 9084768
    [No Abstract]   [Full Text] [Related]  

  • 10. Role of scaffolding protein CipC of Clostridium cellulolyticum in cellulose degradation.
    Pagès S; Gal L; Bélaïch A; Gaudin C; Tardif C; Bélaïch JP
    J Bacteriol; 1997 May; 179(9):2810-6. PubMed ID: 9139893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clostridium beijerinckii cells expressing Neocallimastix patriciarum glycoside hydrolases show enhanced lichenan utilization and solvent production.
    López-Contreras AM; Smidt H; van der Oost J; Claassen PA; Mooibroek H; de Vos WM
    Appl Environ Microbiol; 2001 Nov; 67(11):5127-33. PubMed ID: 11679336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethanol production from cellulose by coupled saccharification/fermentation using Saccharomyces cerevisiae and cellulase complex from Sclerotium rolfsii UV-8 mutant.
    Deshpande MV
    Appl Biochem Biotechnol; 1992 Sep; 36(3):227-34. PubMed ID: 1288411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solventogenic-cellulolytic clostridia from 4-step-screening process in agricultural waste and cow intestinal tract.
    Virunanon C; Chantaroopamai S; Denduangbaripant J; Chulalaksananukul W
    Anaerobe; 2008 Apr; 14(2):109-17. PubMed ID: 18242107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sugar uptake by the solventogenic clostridia.
    Mitchell WJ
    World J Microbiol Biotechnol; 2016 Feb; 32(2):32. PubMed ID: 26748809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The first evidence that a single cellulase can be essential for cellulose degradation in a cellulolytic microorganism.
    Wilson DB
    Mol Microbiol; 2009 Dec; 74(6):1287-8. PubMed ID: 19788547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation.
    Maeda RN; Barcelos CA; Santa Anna LM; Pereira N
    J Biotechnol; 2013 Jan; 163(1):38-44. PubMed ID: 23123260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulosomes: plant-cell-wall-degrading enzyme complexes.
    Doi RH; Kosugi A
    Nat Rev Microbiol; 2004 Jul; 2(7):541-51. PubMed ID: 15197390
    [No Abstract]   [Full Text] [Related]  

  • 18. Advances in ethanol production.
    Geddes CC; Nieves IU; Ingram LO
    Curr Opin Biotechnol; 2011 Jun; 22(3):312-9. PubMed ID: 21600756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dry biorefining maximizes the potentials of simultaneous saccharification and co-fermentation for cellulosic ethanol production.
    Liu G; Zhang Q; Li H; Qureshi AS; Zhang J; Bao X; Bao J
    Biotechnol Bioeng; 2018 Jan; 115(1):60-69. PubMed ID: 28865124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of the production of ethanol between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using unpretreated cassava pulp and enzyme cocktail.
    Zhu M; Li P; Gong X; Wang J
    Biosci Biotechnol Biochem; 2012; 76(4):671-8. PubMed ID: 22484928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.