These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 12803982)
41. The effect of alpha-phenyl-tert-butyl nitrone (PBN) on free radical formation in transient focal ischaemia measured by microdialysis and 3,4-dihydroxybenzoate formation. Gidö G; Cronberg T; Wieloch T Acta Physiol Scand; 2000 Feb; 168(2):277-85. PubMed ID: 10712565 [TBL] [Abstract][Full Text] [Related]
42. Hydroxyl radical generation following ischaemia-reperfusion in cell-free perfused rat kidney. Kadkhodaee M; Endre ZH; Towner RA; Cross M Biochim Biophys Acta; 1995 Feb; 1243(2):169-74. PubMed ID: 7873560 [TBL] [Abstract][Full Text] [Related]
43. Monoamine oxidase-induced hydroxyl radical production and cardiomyocyte injury during myocardial ischemia-reperfusion in rats. Inagaki T; Akiyama T; Du CK; Zhan DY; Yoshimoto M; Shirai M Free Radic Res; 2016 Jun; 50(6):645-53. PubMed ID: 26953687 [TBL] [Abstract][Full Text] [Related]
44. Effects of combined postischemic hypothermia and delayed N-tert-butyl-alpha-pheylnitrone (PBN) administration on histopathologicaland behavioral deficits associated with transient global ischemia in rats. Pazos AJ; Green EJ; Busto R; McCabe PM; Baena RC; Ginsberg MD; Globus MY; Schneiderman N; Dietrich WD Brain Res; 1999 Nov; 846(2):186-95. PubMed ID: 10556635 [TBL] [Abstract][Full Text] [Related]
45. On the application of 4-hydroxybenzoic acid as a trapping agent to study hydroxyl radical generation during cerebral ischemia and reperfusion. Liu M; Liu S; Peterson SL; Miyake M; Liu KJ Mol Cell Biochem; 2002; 234-235(1-2):379-85. PubMed ID: 12162456 [TBL] [Abstract][Full Text] [Related]
46. Critical levels of extracellular glutamate mediating gerbil hippocampal delayed neuronal death during hypothermia: brain microdialysis study. Mitani A; Kataoka K Neuroscience; 1991; 42(3):661-70. PubMed ID: 1683472 [TBL] [Abstract][Full Text] [Related]
47. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. Busto R; Dietrich WD; Globus MY; Valdés I; Scheinberg P; Ginsberg MD J Cereb Blood Flow Metab; 1987 Dec; 7(6):729-38. PubMed ID: 3693428 [TBL] [Abstract][Full Text] [Related]
48. The effect of hypothermia on transient focal ischemia in rat brain evaluated by diffusion- and perfusion-weighted NMR imaging. Jiang Q; Chopp M; Zhang ZG; Helpern JA; Ordidge RJ; Ewing J; Jiang P; Marchese BA J Cereb Blood Flow Metab; 1994 Sep; 14(5):732-41. PubMed ID: 8063869 [TBL] [Abstract][Full Text] [Related]
50. Cerebral oligaemia episode triggers free radical formation and late cognitive deficiencies. Heim C; Zhang J; Lan J; Sieklucka M; Kurz T; Riederer P; Gerlach M; Sontag KH Eur J Neurosci; 2000 Feb; 12(2):715-25. PubMed ID: 10712651 [TBL] [Abstract][Full Text] [Related]
51. Effects of mild (33 degrees C) and moderate (29 degrees C) hypothermia on cerebral blood flow and metabolism, lactate, and extracellular glutamate in experimental head injury. Mori K; Maeda M; Miyazaki M; Iwase H Neurol Res; 1998 Dec; 20(8):719-26. PubMed ID: 9864737 [TBL] [Abstract][Full Text] [Related]
52. Protective effect of histidine on iron (II)-induced hydroxyl radical generation in rat hearts. Obata T; Aomine M; Yamanaka Y J Physiol Paris; 1999; 93(3):213-8. PubMed ID: 10399676 [TBL] [Abstract][Full Text] [Related]
53. Hyperbaric oxygenation alleviates MCAO-induced brain injury and reduces hydroxyl radical formation and glutamate release. Yang ZJ; Xie Y; Bosco GM; Chen C; Camporesi EM Eur J Appl Physiol; 2010 Feb; 108(3):513-22. PubMed ID: 19851780 [TBL] [Abstract][Full Text] [Related]
54. Myocardial microdialysis of salicylic acid to detect hydroxyl radical generation during ischemia. Obata T; Hosokawa H; Soeda T; Karashima K; Uchida Y; Yamanaka Y Comp Biochem Physiol B Biochem Mol Biol; 1995 Jan; 110(1):277-83. PubMed ID: 7858947 [TBL] [Abstract][Full Text] [Related]
55. Protective effects of brief intra- and delayed postischemic hypothermia in a transient focal ischemia model in the neonatal rat. Pabello NG; Tracy SJ; Keller RW Brain Res; 2004 Jan; 995(1):29-38. PubMed ID: 14644468 [TBL] [Abstract][Full Text] [Related]
56. Estimating hydroxyl radical content in rat brain using systemic and intraventricular salicylate: impact of methamphetamine. Giovanni A; Liang LP; Hastings TG; Zigmond MJ J Neurochem; 1995 Apr; 64(4):1819-25. PubMed ID: 7891110 [TBL] [Abstract][Full Text] [Related]
57. [HPLC--detection of hydroxyl radicals in striatum extracellular fluid in rats subjected to reperfusion after cerebral ischemia and the action of vitamin E]. Hu D; Feng YP Yao Xue Xue Bao; 1993; 28(5):337-41. PubMed ID: 8237377 [TBL] [Abstract][Full Text] [Related]
58. Brain temperature modulations during global ischemia fail to influence extracellular lactate levels in rats. Lin B; Busto R; Globus MY; Martinez E; Ginsberg MD Stroke; 1995 Sep; 26(9):1634-8. PubMed ID: 7660410 [TBL] [Abstract][Full Text] [Related]
59. Formation of hydroxyl radicals during myocardial reperfusion after experimental ischemia of different duration. Gorodetskaya EA; Kalenikova EI Bull Exp Biol Med; 2001 Jun; 131(6):533-5. PubMed ID: 11586398 [TBL] [Abstract][Full Text] [Related]
60. Hydroxyl radical generation dependent on extracellular ascorbate in rat striatum, as determined by microdialysis. Hara S; Mizukami H; Kuriiwa F; Endo T Toxicology; 2009 Apr; 258(1):10-6. PubMed ID: 19167451 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]