These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 12804095)

  • 21. Adaptive niche radii and niche shapes approaches for niching with the CMA-ES.
    Shir OM; Emmerich M; Bäck T
    Evol Comput; 2010; 18(1):97-126. PubMed ID: 20064027
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RGFGA: an efficient representation and crossover for grouping genetic algorithms.
    Tucker A; Crampton J; Swift S
    Evol Comput; 2005; 13(4):477-99. PubMed ID: 16297280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modification point depth and genome growth in genetic programming.
    Luke S
    Evol Comput; 2003; 11(1):67-106. PubMed ID: 12804098
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Markov Chain Analysis of Cumulative Step-Size Adaptation on a Linear Constrained Problem.
    Chotard A; Auger A; Hansen N
    Evol Comput; 2015; 23(4):611-40. PubMed ID: 26406165
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robustness, evolvability, and optimality of evolutionary neural networks.
    Palmes PP; Usui S
    Biosystems; 2005 Nov; 82(2):168-88. PubMed ID: 16115726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of the
    Spettel P; Beyer HG
    Evol Comput; 2020; 28(3):463-488. PubMed ID: 31276424
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of Constraint-Handling Mechanisms for the (1,λ)-ES on a Simple Constrained Problem.
    Hellwig M; Arnold DV
    Evol Comput; 2016; 24(1):1-23. PubMed ID: 25322066
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Constrained evolutionary optimization by means of (μ + λ)-differential evolution and improved adaptive trade-off model.
    Wang Y; Cai Z
    Evol Comput; 2011; 19(2):249-85. PubMed ID: 20807080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic diversity as an objective in multi-objective evolutionary algorithms.
    Toffolo A; Benini E
    Evol Comput; 2003; 11(2):151-67. PubMed ID: 12875667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach.
    Diekmann O; Jabin PE; Mischler S; Perthame B
    Theor Popul Biol; 2005 Jun; 67(4):257-71. PubMed ID: 15888304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The hierarchical fair competition (HFC) framework for sustainable evolutionary algorithms.
    Hu J; Goodman E; Seo K; Fan Z; Rosenberg R
    Evol Comput; 2005; 13(2):241-77. PubMed ID: 15969902
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Likelihood-based clustering (LiBaC) for codon models, a method for grouping sites according to similarities in the underlying process of evolution.
    Bao L; Gu H; Dunn KA; Bielawski JP
    Mol Biol Evol; 2008 Sep; 25(9):1995-2007. PubMed ID: 18586695
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new evolutionary algorithm for solving many-objective optimization problems.
    Zou X; Chen Y; Liu M; Kang L
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1402-12. PubMed ID: 18784020
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Error thresholds in genetic algorithms.
    Ochoa G
    Evol Comput; 2006; 14(2):157-82. PubMed ID: 16831105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An adaptive sharing elitist evolution strategy for multiobjective optimization.
    Costa L; Oliveira P
    Evol Comput; 2003; 11(4):417-38. PubMed ID: 14629865
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimal randomized RANSAC.
    Chum O; Matas J
    IEEE Trans Pattern Anal Mach Intell; 2008 Aug; 30(8):1472-82. PubMed ID: 18566499
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mapping the royal road and other hierarchical functions.
    Wiles J; Tonkes B
    Evol Comput; 2003; 11(2):129-49. PubMed ID: 12875666
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the behaviour of the (1, λ)-ES for conically constrained linear problems.
    Arnold DV
    Evol Comput; 2014; 22(3):503-23. PubMed ID: 24605845
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An alternative approach for neural network evolution with a genetic algorithm: crossover by combinatorial optimization.
    García-Pedrajas N; Ortiz-Boyer D; Hervás-Martínez C
    Neural Netw; 2006 May; 19(4):514-28. PubMed ID: 16343847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. General schema theory for genetic programming with subtree-swapping crossover: part I.
    Poli R; McPhee NF
    Evol Comput; 2003; 11(1):53-66. PubMed ID: 12804097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.