These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 12804276)

  • 1. The ab initio simulation of the Earth's core.
    Alfè D; Gillan MJ; Vocadlo L; Brodholt J; Price GD
    Philos Trans A Math Phys Eng Sci; 2002 Jun; 360(1795):1227-44. PubMed ID: 12804276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A seismologically consistent compositional model of Earth's core.
    Badro J; Côté AS; Brodholt JP
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7542-5. PubMed ID: 24821817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational mineral physics and the physical properties of perovskite.
    Brodholt JP; Oganov AR; Price GD
    Philos Trans A Math Phys Eng Sci; 2002 Nov; 360(1800):2507-20. PubMed ID: 12460478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron-silicon alloy in Earth's core?
    Lin JF; Heinz DL; Campbell AJ; Devine JM; Shen G
    Science; 2002 Jan; 295(5553):313-5. PubMed ID: 11786640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ab initio molecular dynamics study of iron phases at high pressure and temperature.
    Belonoshko AB; Arapan S; Rosengren A
    J Phys Condens Matter; 2011 Dec; 23(48):485402. PubMed ID: 22080759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical interaction of Fe and Al(2)O3 as a source of heterogeneity at the Earth's core-mantle boundary.
    Dubrovinsky L; Annersten H; Dubrovinskaia N; Westman F; Harryson H; Fabrichnaya O; Carlson S
    Nature; 2001 Aug; 412(6846):527-9. PubMed ID: 11484050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constraints on the composition of the Earth's core from ab initio calculations.
    Alfe D; Gillan MJ; Price GD
    Nature; 2000 May; 405(6783):172-5. PubMed ID: 10821270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constraints on Earth's inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions.
    Sakamaki T; Ohtani E; Fukui H; Kamada S; Takahashi S; Sakairi T; Takahata A; Sakai T; Tsutsui S; Ishikawa D; Shiraishi R; Seto Y; Tsuchiya T; Baron AQ
    Sci Adv; 2016 Feb; 2(2):e1500802. PubMed ID: 26933678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible thermal and chemical stabilization of body-centred-cubic iron in the Earth's core.
    Vocadlo L; Alfè D; Gillan MJ; Wood IG; Brodholt JP; Price GD
    Nature; 2003 Jul; 424(6948):536-9. PubMed ID: 12891353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low thermal conductivity of iron-silicon alloys at Earth's core conditions with implications for the geodynamo.
    Hsieh WP; Goncharov AF; Labrosse S; Holtgrewe N; Lobanov SS; Chuvashova I; Deschamps F; Lin JF
    Nat Commun; 2020 Jul; 11(1):3332. PubMed ID: 32620830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Models of the Earth's Core.
    Stevenson DJ
    Science; 1981 Nov; 214(4521):611-9. PubMed ID: 17839632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melting phase relations in Fe-Si-H at high pressure and implications for Earth's inner core crystallization.
    Hikosaka K; Tagawa S; Hirose K; Okuda Y; Oka K; Umemoto K; Ohishi Y
    Sci Rep; 2022 Jun; 12(1):10000. PubMed ID: 35705617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron-silica interaction at extreme conditions and the electrically conducting layer at the base of Earth's mantle.
    Dubrovinsky L; Dubrovinskaia N; Langenhorst F; Dobson D; Rubie D; Gessmann C; Abrikosov IA; Johansson B; Baykov VI; Vitos L; Le Bihan T; Crichton WA; Dmitriev V; Weber HP
    Nature; 2003 Mar; 422(6927):58-61. PubMed ID: 12621431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal conductivity of Fe-Si alloys and thermal stratification in Earth's core.
    Zhang Y; Luo K; Hou M; Driscoll P; Salke NP; Minár J; Prakapenka VB; Greenberg E; Hemley RJ; Cohen RE; Lin JF
    Proc Natl Acad Sci U S A; 2022 Jan; 119(1):. PubMed ID: 34969863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The thermochemical structure and evolution of Earth's mantle: constraints and numerical models.
    Tackley PJ; Xie S
    Philos Trans A Math Phys Eng Sci; 2002 Nov; 360(1800):2593-609. PubMed ID: 12460482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mars: a new core-crystallization regime.
    Stewart AJ; Schmidt MW; van Westrenen W; Liebske C
    Science; 2007 Jun; 316(5829):1323-5. PubMed ID: 17540900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling the isotopic evolution of the Earth.
    Paul D; White WM; Turcotte DL
    Philos Trans A Math Phys Eng Sci; 2002 Nov; 360(1800):2433-74. PubMed ID: 12460475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melting of iron at Earth's inner core boundary based on fast X-ray diffraction.
    Anzellini S; Dewaele A; Mezouar M; Loubeyre P; Morard G
    Science; 2013 Apr; 340(6131):464-6. PubMed ID: 23620049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zoned mantle convection.
    Albarède F; Van Der Hilst RD
    Philos Trans A Math Phys Eng Sci; 2002 Nov; 360(1800):2569-92. PubMed ID: 12460481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure of iron in Earth's inner core.
    Tateno S; Hirose K; Ohishi Y; Tatsumi Y
    Science; 2010 Oct; 330(6002):359-61. PubMed ID: 20947762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.