These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 12804282)
1. Interference effects and phase sensitivity in hearing. Moore BC Philos Trans A Math Phys Eng Sci; 2002 May; 360(1794):833-58. PubMed ID: 12804282 [TBL] [Abstract][Full Text] [Related]
2. Compression estimates using behavioral and otoacoustic emission measures. Williams EJ; Bacon SP Hear Res; 2005 Mar; 201(1-2):44-54. PubMed ID: 15721560 [TBL] [Abstract][Full Text] [Related]
3. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions. Manley GA; van Dijk P Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323 [TBL] [Abstract][Full Text] [Related]
4. Elevation of auditory thresholds by spontaneous cochlear oscillations. Powers NL; Salvi RJ; Wang J; Spongr V; Qiu CX Nature; 1995 Jun; 375(6532):585-7. PubMed ID: 7791874 [TBL] [Abstract][Full Text] [Related]
5. Physical basis of two-tone interference in hearing. Jülicher F; Andor D; Duke T Proc Natl Acad Sci U S A; 2001 Jul; 98(16):9080-5. PubMed ID: 11481473 [TBL] [Abstract][Full Text] [Related]
6. Correlations between auditory structures and hearing sensitivity in non-human primates. Coleman MN; Colbert MW J Morphol; 2010 May; 271(5):511-32. PubMed ID: 20025067 [TBL] [Abstract][Full Text] [Related]
7. A physiological ear model for the emulation of masking. Baumgarte F ORL J Otorhinolaryngol Relat Spec; 1999; 61(5):294-304. PubMed ID: 10529651 [TBL] [Abstract][Full Text] [Related]
8. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans. Sun XM Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284 [TBL] [Abstract][Full Text] [Related]
9. Otoacoustic emissions from residual oscillations of the cochlear basilar membrane in a human ear model. Nobili R; Vetesnik A; Turicchia L; Mammano F J Assoc Res Otolaryngol; 2003 Dec; 4(4):478-94. PubMed ID: 14716508 [TBL] [Abstract][Full Text] [Related]
10. Sources and mechanisms of DPOAE generation: implications for the prediction of auditory sensitivity. Shaffer LA; Withnell RH; Dhar S; Lilly DJ; Goodman SS; Harmon KM Ear Hear; 2003 Oct; 24(5):367-79. PubMed ID: 14534408 [TBL] [Abstract][Full Text] [Related]
11. Hearing function in a hyperbaric environment. Mendel LL; Knafelc ME; Cudahy EA Undersea Hyperb Med; 2000; 27(2):91-105. PubMed ID: 11011799 [TBL] [Abstract][Full Text] [Related]
15. Maturation of the occlusion effect: a bone conduction auditory steady state response study in infants and adults with normal hearing. Small SA; Hu N Ear Hear; 2011; 32(6):708-19. PubMed ID: 21617531 [TBL] [Abstract][Full Text] [Related]
16. Comparison of cochlear delay estimates using otoacoustic emissions and auditory brainstem responses. Harte JM; Pigasse G; Dau T J Acoust Soc Am; 2009 Sep; 126(3):1291-301. PubMed ID: 19739743 [TBL] [Abstract][Full Text] [Related]
17. Mammalian behavior and physiology converge to confirm sharper cochlear tuning in humans. Sumner CJ; Wells TT; Bergevin C; Sollini J; Kreft HA; Palmer AR; Oxenham AJ; Shera CA Proc Natl Acad Sci U S A; 2018 Oct; 115(44):11322-11326. PubMed ID: 30322908 [TBL] [Abstract][Full Text] [Related]
18. Electromotile hearing: acoustic tones mask psychophysical response to high-frequency electrical stimulation of intact guinea pig cochleae. Le Prell CG; Kawamoto K; Raphael Y; Dolan DF J Acoust Soc Am; 2006 Dec; 120(6):3889-900. PubMed ID: 17225416 [TBL] [Abstract][Full Text] [Related]
19. Early otitis media with effusion, hearing loss, and auditory processes at school age. Gravel JS; Roberts JE; Roush J; Grose J; Besing J; Burchinal M; Neebe E; Wallace IF; Zeisel S Ear Hear; 2006 Aug; 27(4):353-68. PubMed ID: 16825885 [TBL] [Abstract][Full Text] [Related]