These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 12804364)

  • 1. Petrographic criteria for recognizing certain types of impact spherules in well-preserved precambrian successions.
    Simonson BM
    Astrobiology; 2003; 3(1):49-65. PubMed ID: 12804364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact spherules as a record of an ancient heavy bombardment of Earth.
    Johnson BC; Melosh HJ
    Nature; 2012 May; 485(7396):75-7. PubMed ID: 22535246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A late Triassic impact ejecta layer in southwestern Britain.
    Walkden G; Parker J; Kelley S
    Science; 2002 Dec; 298(5601):2185-8. PubMed ID: 12434010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early precambrian asteroid impact-triggered tsunami: excavated seabed, debris flows, exotic boulders, and turbulence features associated with 3.47-2.47 Ga-old asteroid impact fallout units, Pilbara Craton, Western Australia.
    Glikson AY
    Astrobiology; 2004; 4(1):19-50. PubMed ID: 15104901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geological and geochemical record of 3400-million-year-old terrestrial meteorite impacts.
    Lowe DR; Byerly GR; Asaro F; Kyte FJ
    Science; 1989 Sep; 245(4921):959-62. PubMed ID: 17780536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lunar nodal tide and distance to the Moon during the Precambrian.
    Walker JC; Zahnle KJ
    Nature; 1986 Apr; 320():600-2. PubMed ID: 11540876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y ago.
    Wittke JH; Weaver JC; Bunch TE; Kennett JP; Kennett DJ; Moore AM; Hillman GC; Tankersley KB; Goodyear AC; Moore CR; Daniel IR; Ray JH; Lopinot NH; Ferraro D; Israde-Alcántara I; Bischoff JL; DeCarli PS; Hermes RE; Kloosterman JB; Revay Z; Howard GA; Kimbel DR; Kletetschka G; Nabelek L; Lipo CP; Sakai S; West A; Firestone RB
    Proc Natl Acad Sci U S A; 2013 Jun; 110(23):E2088-97. PubMed ID: 23690611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unified theory of impact crises and mass extinctions: quantitative tests.
    Rampino MR; Haggerty BM; Pagano TC
    Ann N Y Acad Sci; 1997 May; 822():403-31. PubMed ID: 11543121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asteroid shower on the Earth-Moon system immediately before the Cryogenian period revealed by KAGUYA.
    Terada K; Morota T; Kato M
    Nat Commun; 2020 Jul; 11(1):3453. PubMed ID: 32694509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbonate deposition during the late Proterozoic Era: an example from Spitsbergen.
    Knoll AH; Swett K
    Am J Sci; 1990; 290-A():104-32. PubMed ID: 11538689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of planetary cores and the Earth-Moon system from Nb/Ta systematics.
    Münker C; Pfänder JA; Weyer S; Büchl A; Kleine T; Mezger K
    Science; 2003 Jul; 301(5629):84-7. PubMed ID: 12843390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Was there a late Archean biospheric explosion?
    Lindsay JF
    Astrobiology; 2008 Aug; 8(4):823-39. PubMed ID: 18844459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Earth's Impact Events Through Geologic Time: A List of Recommended Ages for Terrestrial Impact Structures and Deposits.
    Schmieder M; Kring DA
    Astrobiology; 2020 Jan; 20(1):91-141. PubMed ID: 31880475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin and provenance of spherules and magnetic grains at the Younger Dryas boundary.
    Wu Y; Sharma M; LeCompte MA; Demitroff MN; Landis JD
    Proc Natl Acad Sci U S A; 2013 Sep; 110(38):E3557-66. PubMed ID: 24009337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of tektites: an alternative to terrestrial impact theory.
    Izokh EP
    Chem Erde; 1996; 56():458-74. PubMed ID: 11541098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spherule beds 3.47-3.24 billion years old in the Barberton Greenstone Belt, South Africa: a record of large meteorite impacts and their influence on early crustal and biological evolution.
    Lowe DR; Byerly GR; Kyte FT; Shukolyukov A; Asaro F; Krull A
    Astrobiology; 2003; 3(1):7-48. PubMed ID: 12804363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An actualistic perspective into Archean worlds - (cyano-)bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Ga Pongola Supergroup, South Africa.
    Noffke N; Beukes N; Bower D; Hazen RM; Swift DJ
    Geobiology; 2008 Jan; 6(1):5-20. PubMed ID: 18380882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geochemistry: on the Moon as it was on Earth.
    Marty B
    Nature; 2005 Aug; 436(7051):631-2. PubMed ID: 16079824
    [No Abstract]   [Full Text] [Related]  

  • 19. Terrestrial nitrogen and noble gases in lunar soils.
    Ozima M; Seki K; Terada N; Miura YN; Podosek FA; Shinagawa H
    Nature; 2005 Aug; 436(7051):655-9. PubMed ID: 16079836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Earth's earliest biosphere-a proposal to develop a collection of curated archean geologic reference materials.
    Lindsay JF; McKay DS; Allen CC
    Astrobiology; 2003; 3(4):739-58. PubMed ID: 14987479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.