BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 12804719)

  • 1. Proline can be utilized as an energy substrate during flight of Aedes aegypti females.
    Scaraffia PY; Wells MA
    J Insect Physiol; 2003 Jun; 49(6):591-601. PubMed ID: 12804719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of hemolymph proline as a nitrogen sink during blood meal digestion by the mosquito Aedes aegypti.
    Goldstrohm DA; Pennington JE; Wells MA
    J Insect Physiol; 2003 Feb; 49(2):115-21. PubMed ID: 12770004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ammonia metabolism in Aedes aegypti.
    Scaraffia PY; Isoe J; Murillo A; Wells MA
    Insect Biochem Mol Biol; 2005 May; 35(5):491-503. PubMed ID: 15804581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of proline and other amino acids during honeybee flight--Apis mellifera carnica POLLMANN).
    Micheu S; Crailsheim K; Leonhard B
    Amino Acids; 2000; 18(2):157-75. PubMed ID: 10817408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilisation of substrates during tethered flight with and without lift generation in the African fruit beetle Pachnoda sinuata (Cetoniinae).
    Auerswald L; Schneider P; GADe G
    J Exp Biol; 1998 Aug; 201(Pt 15):2333-42. PubMed ID: 9662504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial physiology in the major arbovirus vector Aedes aegypti: substrate preferences and sexual differences define respiratory capacity and superoxide production.
    Soares JB; Gaviraghi A; Oliveira MF
    PLoS One; 2015; 10(3):e0120600. PubMed ID: 25803027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of preblood-meal sugar on sugar seeking and upwind flight by gravid and parous Aedes aegypti (Diptera: Culicidae).
    Hancock RG; Foster WA
    J Med Entomol; 1993 Mar; 30(2):353-9. PubMed ID: 8459411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exposure to L-cycloserine incurs survival costs and behavioral alterations in Aedes aegypti females.
    Belloni V; Scaraffia PY
    Parasit Vectors; 2014 Aug; 7():373. PubMed ID: 25129074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. JH biosynthesis and hemolymph titers in adult male Aedes aegypti mosquitoes.
    Nouzova M; Michalkova V; Hernández-Martínez S; Rivera-Perez C; Ramirez CE; Fernandez-Lima F; Noriega FG
    Insect Biochem Mol Biol; 2018 Apr; 95():10-16. PubMed ID: 29526769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural changes in fat body of Aedes aegypti caused by aging and blood feeding.
    Martins GF; Pimenta PF
    J Med Entomol; 2008 Nov; 45(6):1102-7. PubMed ID: 19058635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flight fuel and neuropeptidergic control of fuel mobilisation in the twig wilter, Holopterna alata (Hemiptera, Coreidae).
    Gäde G; Auerswald L; Marco HG
    J Insect Physiol; 2006; 52(11-12):1171-81. PubMed ID: 17070834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impacts of fluorescent powders on survival of different age cohorts, blood-feeding success, and tethered flight speed of Aedes aegypti (Diptera: Culicidae) females.
    Rojas-Araya D; Alto BW; Burkett-Cadena ND; Cummings DA
    Acta Trop; 2020 Jul; 207():105491. PubMed ID: 32283091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flight performance and teneral energy reserves of two genetically-modified and one wild-type strain of the yellow fever mosquito Aedes aegypti.
    Bargielowski I; Kaufmann C; Alphey L; Reiter P; Koella J
    Vector Borne Zoonotic Dis; 2012 Dec; 12(12):1053-8. PubMed ID: 22835152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flight metabolism in Panstrongylus megistus (Hemiptera: Reduviidae): the role of carbohydrates and lipids.
    Canavoso LE; Stariolo R; Rubiolo ER
    Mem Inst Oswaldo Cruz; 2003 Oct; 98(7):909-14. PubMed ID: 14762517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of whole body ammonia metabolism in Aedes aegypti using [15N]-labeled compounds and mass spectrometry.
    Scaraffia PY; Zhang Q; Wysocki VH; Isoe J; Wells MA
    Insect Biochem Mol Biol; 2006 Aug; 36(8):614-22. PubMed ID: 16876704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aedes aegypti: size, reserves, survival, and flight potential.
    Briegel H; Knüsel I; Timmermann SE
    J Vector Ecol; 2001 Jun; 26(1):21-31. PubMed ID: 11469181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reproductive physiology of Aedes (Aedimorphus) vexans (Diptera: Culicidae) in relation to flight potential.
    Briegel H; Waltert A; Kuhn AR
    J Med Entomol; 2001 Jul; 38(4):557-65. PubMed ID: 11476336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive Proteomics Analysis of the Hemolymph Composition of Sugar-Fed
    Alvarenga PH; Alves E Silva TL; Suzuki M; Nardone G; Cecilio P; Vega-Rodriguez J; Ribeiro JMC; Andersen JF
    J Proteome Res; 2024 Apr; 23(4):1471-1487. PubMed ID: 38576391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feeding the mosquito Aedes aegypti with TMOF and its analogs; effect on trypsin biosynthesis and egg development.
    Borovsky D; Mahmood F
    Regul Pept; 1995 Jun; 57(3):273-81. PubMed ID: 7480877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood?
    Harrington LC; Edman JD; Scott TW
    J Med Entomol; 2001 May; 38(3):411-22. PubMed ID: 11372967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.