These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 12804870)

  • 21. Influence of intrapredatory interferences on impulsive biological control efficiency.
    Nundloll S; Mailleret L; Grognard F
    Bull Math Biol; 2010 Nov; 72(8):2113-38. PubMed ID: 20333476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biocontrol in an impulsive predator-prey model.
    Terry AJ
    Math Biosci; 2014 Oct; 256():102-15. PubMed ID: 25195089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of an integrated feedback control for a pest management predator-prey model.
    Shi ZZ; Cheng HD; Liu Y; Wang YH
    Math Biosci Eng; 2019 Sep; 16(6):7963-7981. PubMed ID: 31698650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Population dynamics and management of diamondback moth (Plutella xylostella) in China: the relative contributions of climate, natural enemies and cropping patterns.
    Li Z; Zalucki MP; Yonow T; Kriticos DJ; Bao H; Chen H; Hu Z; Feng X; Furlong MJ
    Bull Entomol Res; 2016 Apr; 106(2):197-214. PubMed ID: 26693884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of a nucleopolyhedrovirus bioinsecticide and selected synthetic insecticides on the abundance of insect natural enemies on maize in southern Mexico.
    Armenta R; Martínez AM; Chapman JW; Magallanes R; Goulson D; Caballero P; Cave RD; Cisneros J; Valle J; Castillejos V; Penagos DI; García LF; Williams T
    J Econ Entomol; 2003 Jun; 96(3):649-61. PubMed ID: 12852601
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of pesticide dose on Holling II predator-prey model with feedback control.
    Yang J; Tan Y
    J Biol Dyn; 2018 Dec; 12(1):527-550. PubMed ID: 29862900
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple attractors of host-parasitoid models with integrated pest management strategies: eradication, persistence and outbreak.
    Tang S; Xiao Y; Cheke RA
    Theor Popul Biol; 2008 Mar; 73(2):181-97. PubMed ID: 18215410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential for Sulfoxaflor to Improve Conservation Biological Control of Aphis glycines (Hemiptera: Aphididae) in Soybean.
    Tran AK; Alves TM; Koch RL
    J Econ Entomol; 2016 Oct; 109(5):2105-14. PubMed ID: 27535848
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamics of pest and its predator model with disease in the pest and optimal use of pesticide.
    Kar TK; Ghorai A; Jana S
    J Theor Biol; 2012 Oct; 310():187-98. PubMed ID: 22771900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential impacts of six insecticides on a mealybug and its coccinellid predator.
    Barbosa PRR; Oliveira MD; Barros EM; Michaud JP; Torres JB
    Ecotoxicol Environ Saf; 2018 Jan; 147():963-971. PubMed ID: 29029382
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insecticides suppress natural enemies and increase pest damage in cabbage.
    Bommarco R; Miranda F; Bylund H; Björkman C
    J Econ Entomol; 2011 Jun; 104(3):782-91. PubMed ID: 21735894
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduced-risk insecticides for control of grape berry moth (Lepidoptera: Tortricidae) and conservation of natural enemies.
    Jenkins PE; Isaacs R
    J Econ Entomol; 2007 Jun; 100(3):855-65. PubMed ID: 17598548
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potential for integrating eleven agricultural insecticides with the predatory bug Pristhesancus plagipennis (Hemiptera: Reduviidae).
    Grundy PR; Maelzer D; Collins PJ; Hassan E
    J Econ Entomol; 2000 Jun; 93(3):584-9. PubMed ID: 10902303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Ecoinformatics Approach to Field-Scale Evaluation of Insecticide Effects in California Citrus: Are Citrus Thrips and Citrus Red Mite Induced Pests?
    Livingston G; Hack L; Steinmann KP; Grafton-Cardwell EE; Rosenheim JA
    J Econ Entomol; 2018 May; 111(3):1290-1297. PubMed ID: 29590397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioeconomic synergy between tactics for insect eradication in the presence of Allee effects.
    Blackwood JC; Berec L; Yamanaka T; Epanchin-Niell RS; Hastings A; Liebhold AM
    Proc Biol Sci; 2012 Jul; 279(1739):2807-15. PubMed ID: 22438497
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated Pest Management in a Predator-Prey System with Allee Effects.
    Costa MI; dos Anjos L
    Neotrop Entomol; 2015 Aug; 44(4):385-91. PubMed ID: 26045054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insecticide sprays, natural enemy assemblages and predation on Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae).
    Monzo C; Qureshi JA; Stansly PA
    Bull Entomol Res; 2014 Oct; 104(5):576-85. PubMed ID: 24830653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A theoretical approach on controlling agricultural pest by biological controls.
    Mondal PK; Jana S; Kar TK
    Acta Biotheor; 2014 Mar; 62(1):47-67. PubMed ID: 24212833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An eco-epidemic model for assessing the application of integrated pest management strategies.
    Qin W; Xia Y; Yang Y
    Math Biosci Eng; 2023 Aug; 20(9):16506-16527. PubMed ID: 37920022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences.
    Tang S; Cheke RA
    J Math Biol; 2005 Mar; 50(3):257-92. PubMed ID: 15480671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.