These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12804889)

  • 1. A general gel layer model for the transport of colloids and macroions in dilute solution.
    Allison S; Wall S; Rasmusson M
    J Colloid Interface Sci; 2003 Jul; 263(1):84-98. PubMed ID: 12804889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The primary electroviscous effect, free solution electrophoretic mobility, and diffusion of dilute prolate ellipsoid particles (minor axis = 3 nm) in monovalent salt solution.
    Allison S; Rasmusson M; Wall S
    J Colloid Interface Sci; 2003 Feb; 258(2):289-97. PubMed ID: 12618099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophoretic mobility and primary electroviscous effect of dilute "hard" prolate ellipsoids.
    Allison S
    J Colloid Interface Sci; 2005 Feb; 282(1):231-7. PubMed ID: 15576103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boundary element modeling of biomolecular transport.
    Allison SA
    Biophys Chem; 2001 Nov; 93(2-3):197-213. PubMed ID: 11804726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the electrophoretic mobility and viscosity of dilute Ludox solutions in terms of a spherical gel layer model.
    Allison S
    J Colloid Interface Sci; 2004 Sep; 277(1):248-54. PubMed ID: 15276064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrokinetic modeling of metal oxides.
    Allison S
    J Colloid Interface Sci; 2009 Apr; 332(1):1-10. PubMed ID: 19101679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrokinetic transport of rigid macroions in the thin double layer limit: a boundary element approach.
    Allison SA; Xin Y
    J Colloid Interface Sci; 2005 Aug; 288(2):616-28. PubMed ID: 15927633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrokinetic transport of a spherical gel-layer model particle: inclusion of charge regulation and application to polystyrene sulfonate.
    Allison S; Xin Y
    J Colloid Interface Sci; 2006 Jul; 299(2):977-88. PubMed ID: 16527288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualizing ion relaxation in the transport of short DNA fragments.
    Allison SA; Wang H; Laue TM; Wilson TJ; Wooll JO
    Biophys J; 1999 May; 76(5):2488-501. PubMed ID: 10233066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophoretic Mobility of a Dilute, Highly Charged "Soft" Spherical Particle in a Charged Hydrogel.
    Allison S; Li F; Le M
    J Phys Chem B; 2016 Aug; 120(33):8071-9. PubMed ID: 26815300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the electrophoresis of rigid polyions: application to lysozyme.
    Allison SA; Tran VT
    Biophys J; 1995 Jun; 68(6):2261-70. PubMed ID: 7647233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the electrophoresis of lysozyme. II. Inclusion of ion relaxation.
    Allison SA; Potter M; McCammon JA
    Biophys J; 1997 Jul; 73(1):133-40. PubMed ID: 9199778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophoresis of a charged soft particle in a charged cavity with arbitrary double-layer thickness.
    Chen WJ; Keh HJ
    J Phys Chem B; 2013 Aug; 117(33):9757-67. PubMed ID: 23898800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusiophoresis in a suspension of charge-regulating colloidal spheres.
    Keh HJ; Li YL
    Langmuir; 2007 Jan; 23(3):1061-72. PubMed ID: 17241015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approximate analytic expressions for the electrophoretic mobility of spheroidal particles.
    Ohshima H
    Electrophoresis; 2021 Apr; 42(7-8):1003-1009. PubMed ID: 32975819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interplay of diffusional and electrophoretic transport mechanisms of charged solutes in the liquid film surrounding charged nonporous adsorbent particles employed in finite bath adsorption systems.
    Grimes BA; Liapis AI
    J Colloid Interface Sci; 2002 Apr; 248(2):504-20. PubMed ID: 16290557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric-field-induced displacement of a charged spherical colloid embedded in an elastic Brinkman medium.
    Hill RJ; Ostoja-Starzewski M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011404. PubMed ID: 18351854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Analysis of Electrophoresis of Concentrated Suspensions of Colloidal Particles.
    Johnson TJ; Davis EJ
    J Colloid Interface Sci; 1999 Jul; 215(2):397-408. PubMed ID: 10419675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal speciation dynamics in monodisperse soft colloidal ligand suspensions.
    Duval JF; Pinheiro JP; van Leeuwen HP
    J Phys Chem A; 2008 Aug; 112(31):7137-51. PubMed ID: 18636700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of non-equilibrium association-dissociation processes in the dynamic electrophoretic mobility and dielectric response of realistic salt-free concentrated suspensions.
    Carrique F; Ruiz-Reina E; Lechuga L; Arroyo FJ; Delgado Á
    Adv Colloid Interface Sci; 2013 Dec; 201-202():57-67. PubMed ID: 24161224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.