These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 12804892)
1. Expressions for evaluating the possibility of slip at the liquid-solid interface in open tube capillary electrochromatography. Grimes BA; Liapis AI J Colloid Interface Sci; 2003 Jul; 263(1):113-8. PubMed ID: 12804892 [TBL] [Abstract][Full Text] [Related]
2. Modeling the velocity field of the electroosmotic flow in charged capillaries and in capillary columns packed with charged particles: interstitial and intraparticle velocities in capillary electrochromatography systems. Liapis AI; Grimes BA J Chromatogr A; 2000 Apr; 877(1-2):181-215. PubMed ID: 10845799 [TBL] [Abstract][Full Text] [Related]
3. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles. Grimes BA; Liapis AI J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of capillary electrochromatography experimental study on the electrosmotic flow and conductance in open and packed capillaries. Choudhary G; Horváth C J Chromatogr A; 1997 Sep; 781(1-2):161-83. PubMed ID: 9368384 [TBL] [Abstract][Full Text] [Related]
5. Capillary electrochromatography with segmented capillaries for controlling electroosmotic flow. Yang C; El Rassi Z Electrophoresis; 1999 Jan; 20(1):18-23. PubMed ID: 10065953 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of electroosmotic flow in capillary electrochromatography. Wen E; Rathore AS; Horváth C Electrophoresis; 2001 Oct; 22(17):3720-7. PubMed ID: 11699910 [TBL] [Abstract][Full Text] [Related]
7. Novel general expressions that describe the behavior of the height equivalent of a theoretical plate in chromatographic systems involving electrically-driven and pressure-driven flows. Grimes BA; Lüdtke S; Unger KK; Liapis AI J Chromatogr A; 2002 Dec; 979(1-2):447-66. PubMed ID: 12498277 [TBL] [Abstract][Full Text] [Related]
8. Influencing electroosmotic flow and selectivity in open tubular electrochromatography by tetrakis(pentafluorophenyl)porphyrin as capillary wall modifier. Charvátová J; Kasicka V; Deyl Z; Král V J Chromatogr A; 2003 Mar; 990(1-2):111-9. PubMed ID: 12685589 [TBL] [Abstract][Full Text] [Related]
9. Axial nonuniformities and flow in columns for capillary electrochromatography. Rathore AS; Horváth C Anal Chem; 1998 Jul; 70(14):3069-77. PubMed ID: 9684553 [TBL] [Abstract][Full Text] [Related]
10. Quantitative analysis and synthesis of the electrokinetic mass transport and adsorption mechanisms of a charged adsorbate in capillary electrochromatography systems employing charged adsorbent particles. Grimes BA; Liapis AI J Chromatogr A; 2001 Jun; 919(1):157-79. PubMed ID: 11459302 [TBL] [Abstract][Full Text] [Related]
12. Capillary electrochromatography: theories on electroosmotic flow in porous media. Rathore AS; Horváth C J Chromatogr A; 1997 Sep; 781(1-2):185-95. PubMed ID: 9368385 [TBL] [Abstract][Full Text] [Related]
13. [Study on separating characteristics in capillary reversed-phase electrochromatography]. Wei W; Wang Y; Luo G Se Pu; 1997 Mar; 15(2):110-3. PubMed ID: 15739393 [TBL] [Abstract][Full Text] [Related]
14. A comparison of 2 micron inner diameter open tubular column liquid chromatography with pressure-driven isocratic, slip-flow, and electrochromatographic modes of operation: a theoretical study. Schure MR; Beauchamp MD J Chromatogr A; 2021 Feb; 1638():461818. PubMed ID: 33516049 [TBL] [Abstract][Full Text] [Related]
15. Behavior of cation-exchange materials in capillary electrochromatography. Cikalo MG; Bartle KD; Myers P Anal Chem; 1999 May; 71(9):1820-5. PubMed ID: 21662821 [TBL] [Abstract][Full Text] [Related]
17. Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip. Park HM; Kim TW Lab Chip; 2009 Jan; 9(2):291-6. PubMed ID: 19107287 [TBL] [Abstract][Full Text] [Related]
18. A method to determine zeta potential and Navier slip coefficient of microchannels. Park HM J Colloid Interface Sci; 2010 Jul; 347(1):132-41. PubMed ID: 20362996 [TBL] [Abstract][Full Text] [Related]
19. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries. Silva G; Semiao V Phys Rev E; 2017 Jul; 96(1-1):013311. PubMed ID: 29347253 [TBL] [Abstract][Full Text] [Related]
20. Capillary electrochromatography using a fluoropolymer as the chromatographic support material. Alicea-Maldonado R; Colón LA Electrophoresis; 1999 Jan; 20(1):37-42. PubMed ID: 10065956 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]