These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 12804894)

  • 1. Electrokinetic mixing vortices due to electrolyte depletion at microchannel junctions.
    Takhistov P; Duginova K; Chang HC
    J Colloid Interface Sci; 2003 Jul; 263(1):133-43. PubMed ID: 12804894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel.
    Peng R; Li D
    J Colloid Interface Sci; 2015 Feb; 440():126-32. PubMed ID: 25460698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroosmotic flow mixing in zigzag microchannels.
    Chen JK; Yang RJ
    Electrophoresis; 2007 Mar; 28(6):975-83. PubMed ID: 17300132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrokinetic-vortex formation near a two-part cylinder with same-sign zeta potentials in a straight microchannel.
    Wang C; Song Y; Pan X
    Electrophoresis; 2020 Jun; 41(10-11):793-801. PubMed ID: 32012307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid Mixing Based on Electrokinetic Vortices Generated in a T-Type Microchannel.
    Wang C
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33530439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring microchannel electroosmotic mobility and zeta potential by the current monitoring method.
    Shao C; Devoe DL
    Methods Mol Biol; 2013; 949():55-63. PubMed ID: 23329435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation and experimental investigation of confinement effects on ion transport and electrokinetic flows at the microscale.
    Benneker AM; Wood JA; Tsai PA; Lammertink RG
    Sci Rep; 2016 Nov; 6():37236. PubMed ID: 27853257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear electrokinetic phenomena around nearly insulated sharp tips in microflows.
    Eckstein Y; Yossifon G; Seifert A; Miloh T
    J Colloid Interface Sci; 2009 Oct; 338(1):243-9. PubMed ID: 19596337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method to determine zeta potential and Navier slip coefficient of microchannels.
    Park HM
    J Colloid Interface Sci; 2010 Jul; 347(1):132-41. PubMed ID: 20362996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vortex chain formation in regions of ion concentration polarization.
    Hanasoge S; Diez FJ
    Lab Chip; 2015 Sep; 15(17):3549-55. PubMed ID: 26198565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel.
    Marcos ; Yang C; Ooi KT; Wong TN; Masliyah JH
    J Colloid Interface Sci; 2004 Jul; 275(2):679-98. PubMed ID: 15178303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical Solution of Time-Periodic Electroosmotic Flow through Cylindrical Microchannel with Non-Uniform Surface Potential.
    Khan AI; Dutta P
    Micromachines (Basel); 2019 Jul; 10(8):. PubMed ID: 31357437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrokinetic secondary-flow behavior in a curved microchannel under dissimilar surface conditions.
    Chun MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036312. PubMed ID: 21517592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Micromixer That Exploits Electrokinetic Vortices Generated on a Janus Droplet Surface.
    Wang C; He Y
    Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38258210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical study of enhanced mixing in pressure-driven flows in microchannels using a spatially periodic electric field.
    Krishnaveni T; Renganathan T; Picardo JR; Pushpavanam S
    Phys Rev E; 2017 Sep; 96(3-1):033117. PubMed ID: 29347018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Parametric Study of Electroosmotically Driven Flow of Power-Law Fluid in a Cylindrical Microcapillary at High Zeta Potential.
    Deng S
    Micromachines (Basel); 2017 Nov; 8(12):. PubMed ID: 30400535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical study of the vortex-induced electroosmotic mixing of non-Newtonian biofluids in a nonuniformly charged wavy microchannel: Effect of finite ion size.
    Mehta SK; Pati S; Mondal PK
    Electrophoresis; 2021 Dec; 42(23):2498-2510. PubMed ID: 33527431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Analysis of the Heterogeneity Effect on Electroosmotic Micromixers Based on the Standard Deviation of Concentration and Mixing Entropy Index.
    Farahinia A; Jamaati J; Niazmand H; Zhang W
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parametrical studies of electroosmotic transport characteristics in submicrometer channels.
    Postler T; Slouka Z; Svoboda M; Pribyl M; Snita D
    J Colloid Interface Sci; 2008 Apr; 320(1):321-32. PubMed ID: 18201714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous estimation of zeta potential and slip coefficient in hydrophobic microchannels.
    Park HM; Kim TW
    Anal Chim Acta; 2007 Jun; 593(2):171-7. PubMed ID: 17543604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.