These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 12805281)

  • 1. Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function.
    Hoffmann A; Kann O; Ohlemeyer C; Hanisch UK; Kettenmann H
    J Neurosci; 2003 Jun; 23(11):4410-9. PubMed ID: 12805281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The tyrosine kinase inhibitor AG126 restores receptor signaling and blocks release functions in activated microglia (brain macrophages) by preventing a chronic rise in the intracellular calcium level.
    Kann O; Hoffmann A; Schumann RR; Weber JR; Kettenmann H; Hanisch UK
    J Neurochem; 2004 Aug; 90(3):513-25. PubMed ID: 15255929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipopolysaccharide sensitizes microglia toward Ca(2+)-induced cell death: mode of cell death shifts from apoptosis to necrosis.
    Nagano T; Kimura SH; Takai E; Matsuda T; Takemura M
    Glia; 2006 Jan; 53(1):67-73. PubMed ID: 16158419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TRPM2 contributes to LPS/IFNγ-induced production of nitric oxide via the p38/JNK pathway in microglia.
    Miyake T; Shirakawa H; Kusano A; Sakimoto S; Konno M; Nakagawa T; Mori Y; Kaneko S
    Biochem Biophys Res Commun; 2014 Feb; 444(2):212-7. PubMed ID: 24462864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Astrocytes inhibit nitric oxide-dependent Ca(2+) dynamics in activated microglia: involvement of ATP released via pannexin 1 channels.
    Orellana JA; Montero TD; von Bernhardi R
    Glia; 2013 Dec; 61(12):2023-37. PubMed ID: 24123492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of mouse microglial cells affects P2 receptor signaling.
    Möller T; Kann O; Verkhratsky A; Kettenmann H
    Brain Res; 2000 Jan; 853(1):49-59. PubMed ID: 10627307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of KCNN3/SK3/K(Ca)2.3 channels attenuates enhanced calcium influx and inflammatory cytokine production in activated microglia.
    Dolga AM; Letsche T; Gold M; Doti N; Bacher M; Chiamvimonvat N; Dodel R; Culmsee C
    Glia; 2012 Dec; 60(12):2050-64. PubMed ID: 23002008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium store-mediated signaling in sustentacular cells of the mouse olfactory epithelium.
    Hegg CC; Irwin M; Lucero MT
    Glia; 2009 Apr; 57(6):634-44. PubMed ID: 18942758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complement 5a controls motility of murine microglial cells in vitro via activation of an inhibitory G-protein and the rearrangement of the actin cytoskeleton.
    Nolte C; Möller T; Walter T; Kettenmann H
    Neuroscience; 1996 Aug; 73(4):1091-107. PubMed ID: 8809827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thrombin-induced activation of cultured rodent microglia.
    Möller T; Hanisch UK; Ransom BR
    J Neurochem; 2000 Oct; 75(4):1539-47. PubMed ID: 10987834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Migration and Phagocytic Ability of Activated Microglia During Post-natal Development is Mediated by Calcium-Dependent Purinergic Signalling.
    Sunkaria A; Bhardwaj S; Halder A; Yadav A; Sandhir R
    Mol Neurobiol; 2016 Mar; 53(2):944-954. PubMed ID: 25575683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-derived neurotrophic factor induces sustained elevation of intracellular Ca2+ in rodent microglia.
    Mizoguchi Y; Monji A; Kato T; Seki Y; Gotoh L; Horikawa H; Suzuki SO; Iwaki T; Yonaha M; Hashioka S; Kanba S
    J Immunol; 2009 Dec; 183(12):7778-86. PubMed ID: 19923466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beta-chemokines and human immunodeficiency virus type-1 proteins evoke intracellular calcium increases in human microglia.
    Hegg CC; Hu S; Peterson PK; Thayer SA
    Neuroscience; 2000; 98(1):191-9. PubMed ID: 10858625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP-evoked intracellular Ca
    Palomba NP; Martinello K; Cocozza G; Casciato S; Mascia A; Di Gennaro G; Morace R; Esposito V; Wulff H; Limatola C; Fucile S
    J Neuroinflammation; 2021 Feb; 18(1):44. PubMed ID: 33588880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular acidification decreases the basal motility of cultured mouse microglia via the rearrangement of the actin cytoskeleton.
    Faff L; Nolte C
    Brain Res; 2000 Jan; 853(1):22-31. PubMed ID: 10627304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effects of SSRIs on IFN-γ induced microglial activation through the regulation of intracellular calcium.
    Horikawa H; Kato TA; Mizoguchi Y; Monji A; Seki Y; Ohkuri T; Gotoh L; Yonaha M; Ueda T; Hashioka S; Kanba S
    Prog Neuropsychopharmacol Biol Psychiatry; 2010 Oct; 34(7):1306-16. PubMed ID: 20654672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of protein kinases in the potentiation of lipopolysaccharide-induced inflammatory mediator formation by thapsigargin in peritoneal macrophages.
    Chen BC; Hsieh SL; Lin WW
    J Leukoc Biol; 2001 Feb; 69(2):280-8. PubMed ID: 11272279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of microglial ramification in microglia-astrocyte cocultures: involvement of adenylate cyclase, calcium, phosphatase, and Gi-protein systems.
    Kalla R; Bohatschek M; Kloss CU; Krol J; Von Maltzan X; Raivich G
    Glia; 2003 Jan; 41(1):50-63. PubMed ID: 12465045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous Ca
    Korvers L; de Andrade Costa A; Mersch M; Matyash V; Kettenmann H; Semtner M
    Cell Calcium; 2016 Dec; 60(6):396-406. PubMed ID: 27697289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microglial alpha7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role.
    Suzuki T; Hide I; Matsubara A; Hama C; Harada K; Miyano K; Andrä M; Matsubayashi H; Sakai N; Kohsaka S; Inoue K; Nakata Y
    J Neurosci Res; 2006 Jun; 83(8):1461-70. PubMed ID: 16652343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.