These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 12805283)

  • 1. Neocortical long-term potentiation and experience-dependent synaptic plasticity require alpha-calcium/calmodulin-dependent protein kinase II autophosphorylation.
    Hardingham N; Glazewski S; Pakhotin P; Mizuno K; Chapman PF; Giese KP; Fox K
    J Neurosci; 2003 Jun; 23(11):4428-36. PubMed ID: 12805283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-Component Structural Plasticity Mediated by αCaMKII Autophosphorylation on Basal Dendrites of Cortical Layer 2/3 Neurones.
    Seaton G; Hodges G; de Haan A; Grewal A; Pandey A; Kasai H; Fox K
    J Neurosci; 2020 Mar; 40(11):2228-2245. PubMed ID: 32001612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Requirement for alpha-CaMKII in experience-dependent plasticity of the barrel cortex.
    Glazewski S; Chen CM; Silva A; Fox K
    Science; 1996 Apr; 272(5260):421-3. PubMed ID: 8602534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity.
    Ehrlich I; Malinow R
    J Neurosci; 2004 Jan; 24(4):916-27. PubMed ID: 14749436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of nitric oxide and GluR1 in presynaptic and postsynaptic components of neocortical potentiation.
    Hardingham N; Fox K
    J Neurosci; 2006 Jul; 26(28):7395-404. PubMed ID: 16837587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anatomical pathways and molecular mechanisms for plasticity in the barrel cortex.
    Fox K
    Neuroscience; 2002; 111(4):799-814. PubMed ID: 12031405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of autonomous alpha-CaMKII expression on sensory responses and experience-dependent plasticity in mouse barrel cortex.
    Glazewski S; Bejar R; Mayford M; Fox K
    Neuropharmacology; 2001 Nov; 41(6):771-8. PubMed ID: 11640932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time course of experience-dependent synaptic potentiation and depression in barrel cortex of adolescent rats.
    Glazewski S; Fox K
    J Neurophysiol; 1996 Apr; 75(4):1714-29. PubMed ID: 8727408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory deprivation unmasks a PKA-dependent synaptic plasticity mechanism that operates in parallel with CaMKII.
    Hardingham N; Wright N; Dachtler J; Fox K
    Neuron; 2008 Dec; 60(5):861-74. PubMed ID: 19081380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spike-timing-dependent potentiation of sensory surround in the somatosensory cortex is facilitated by deprivation-mediated disinhibition.
    Gambino F; Holtmaat A
    Neuron; 2012 Aug; 75(3):490-502. PubMed ID: 22884332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental switch in spike timing-dependent plasticity at layers 4-2/3 in the rodent barrel cortex.
    Itami C; Kimura F
    J Neurosci; 2012 Oct; 32(43):15000-11. PubMed ID: 23100422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two forms of synaptic plasticity with distinct dependence on age, experience, and NMDA receptor subtype in rat visual cortex.
    Yoshimura Y; Ohmura T; Komatsu Y
    J Neurosci; 2003 Jul; 23(16):6557-66. PubMed ID: 12878697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enriching the environment of alphaCaMKIIT286A mutant mice reveals that LTD occurs in memory processing but must be subsequently reversed by LTP.
    Parsley SL; Pilgram SM; Soto F; Giese KP; Edwards FA
    Learn Mem; 2007; 14(1-2):75-83. PubMed ID: 17202430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experience-dependent regulation of presynaptic NMDARs enhances neurotransmitter release at neocortical synapses.
    Urban-Ciecko J; Wen JA; Parekh PK; Barth AL
    Learn Mem; 2014 Jan; 22(1):47-55. PubMed ID: 25512577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of inhibitory autophosphorylation of calcium/calmodulin-dependent kinase II (αCAMKII) in persistent (>24 h) hippocampal LTP and in LTD facilitated by novel object-place learning and recognition in mice.
    Goh JJ; Manahan-Vaughan D
    Behav Brain Res; 2015 May; 285():79-88. PubMed ID: 24480420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ongoing in vivo experience triggers synaptic metaplasticity in the neocortex.
    Clem RL; Celikel T; Barth AL
    Science; 2008 Jan; 319(5859):101-4. PubMed ID: 18174444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The alpha-Ca2+/calmodulin kinase II: a bidirectional modulator of presynaptic plasticity.
    Chapman PF; Frenguelli BG; Smith A; Chen CM; Silva AJ
    Neuron; 1995 Mar; 14(3):591-7. PubMed ID: 7695905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-dependent decrease of synaptic plasticity in the neocortex of alphaCaMKII mutant mice.
    Kirkwood A; Silva A; Bear MF
    Proc Natl Acad Sci U S A; 1997 Apr; 94(7):3380-3. PubMed ID: 9096402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of alpha-CaMKII autophosphorylation in neocortical experience-dependent plasticity.
    Glazewski S; Giese KP; Silva A; Fox K
    Nat Neurosci; 2000 Sep; 3(9):911-8. PubMed ID: 10966622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of plasticity in vivo and in vitro in the developing visual cortex of normal and protein kinase A RIbeta-deficient mice.
    Hensch TK; Gordon JA; Brandon EP; McKnight GS; Idzerda RL; Stryker MP
    J Neurosci; 1998 Mar; 18(6):2108-17. PubMed ID: 9482797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.