These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 1280553)

  • 41. Interactions of intercalating fluorochromes with DNA analyzed by conventional and fluorescence lifetime flow cytometry utilizing deuterium oxide.
    Sailer BL; Nastasi AJ; Valdez JG; Steinkamp JA; Crissman HA
    Cytometry; 1996 Oct; 25(2):164-72. PubMed ID: 8891446
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dual excitation multi- fluorescence flow cytometry for detailed analyses of viability and apoptotic cell transition.
    Mazzini G; Ferrari C; Erba E
    Eur J Histochem; 2003; 47(4):289-98. PubMed ID: 14706924
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chromatic shifts in the fluorescence emitted by murine thymocytes stained with Hoechst 33342.
    Petersen TW; Ibrahim SF; Diercks AH; van den Engh G
    Cytometry A; 2004 Aug; 60(2):173-81. PubMed ID: 15290718
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Discrimination of damaged/dead cells by propidium iodide uptake in immunofluorescently labeled populations analyzed by phase-sensitive flow cytometry.
    Steinkamp JA; Lehnert BE; Lehnert NM
    J Immunol Methods; 1999 Jun; 226(1-2):59-70. PubMed ID: 10410972
    [TBL] [Abstract][Full Text] [Related]  

  • 45. UV-activated conversion of Hoechst 33258, DAPI, and Vybrant DyeCycle fluorescent dyes into blue-excited, green-emitting protonated forms.
    Zurek-Biesiada D; Kędracka-Krok S; Dobrucki JW
    Cytometry A; 2013 May; 83(5):441-51. PubMed ID: 23418106
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparative evaluation of several DNA binding dyes in the detection of apoptosis-associated chromatin degradation by flow cytometry.
    Telford WG; King LE; Fraker PJ
    Cytometry; 1992; 13(2):137-43. PubMed ID: 1372208
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cell cycle-related changes in chromatin structure detected by flow cytometry using multiple DNA fluorochromes.
    Crissman HA; Steinkamp JA
    Eur J Histochem; 1993; 37(2):129-38. PubMed ID: 7688598
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Concept for the traceability of fluorescence (beads) in flow cytometry: exploiting saturation and microscopic single molecule bleaching.
    Neukammer J; Gohlke C; Krämer B; Roos M
    J Fluoresc; 2005 May; 15(3):433-41. PubMed ID: 15986162
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Two-photon fluorescence excitation in detection of biomolecules.
    Soini E; Meltola NJ; Soini AE; Soukka J; Soini JT; Hänninen PE
    Biochem Soc Trans; 2000 Feb; 28(2):70-4. PubMed ID: 10816101
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Experimental approach to extend the range for counting fluorescent molecules based on photon-antibunching.
    Ta H; Kiel A; Wahl M; Herten DP
    Phys Chem Chem Phys; 2010 Sep; 12(35):10295-300. PubMed ID: 20603676
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Liquid crystal phases of DNA: evaluation of DNA organization by two-photon fluorescence microscopy and polarization analysis.
    Olesiak-Banska J; Mojzisova H; Chauvat D; Zielinski M; Matczyszyn K; Tauc P; Zyss J
    Biopolymers; 2011 Jun; 95(6):365-75. PubMed ID: 21213259
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Counting fluorescent dye molecules on DNA origami by means of photon statistics.
    Kurz A; Schmied JJ; Grußmayer KS; Holzmeister P; Tinnefeld P; Herten DP
    Small; 2013 Dec; 9(23):4061-8. PubMed ID: 23794455
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Cell staining for flow cytometry].
    Sasaki K; Kurose A
    Nihon Rinsho; 1992 Oct; 50(10):2307-11. PubMed ID: 1280303
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental and model investigations of bleaching and saturation of fluorescence in flow cytometry.
    Doornbos RM; de Grooth BG; Greve J
    Cytometry; 1997 Nov; 29(3):204-14. PubMed ID: 9389437
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantum approach for nanoparticle fluorescence by sub-ns photon detection.
    Yamamoto M; Robinson JP
    Cytometry A; 2021 Feb; 99(2):145-151. PubMed ID: 33476076
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differential effects of deuterium oxide on the fluorescence lifetimes and intensities of dyes with different modes of binding to DNA.
    Sailer BL; Nastasi AJ; Valdez JG; Steinkamp JA; Crissman HA
    J Histochem Cytochem; 1997 Feb; 45(2):165-75. PubMed ID: 9016307
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polarization of scatter and fluorescence signals in flow cytometry.
    Asbury CL; Uy JL; van den Engh G
    Cytometry; 2000 Jun; 40(2):88-101. PubMed ID: 10805928
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Efficient detection of single DNA fragments in flowing sample streams by two-photon fluorescence excitation.
    Van Orden A; Cai H; Goodwin PM; Keller RA
    Anal Chem; 1999 Jun; 71(11):2108-16. PubMed ID: 21662745
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimization of high-sensitivity fluorescence detection.
    Mathies RA; Peck K; Stryer L
    Anal Chem; 1990 Sep; 62(17):1786-91. PubMed ID: 2240569
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combining optical trapping and single-molecule fluorescence spectroscopy: enhanced photobleaching of fluorophores.
    Dijk MA; Kapitein LC; Mameren Jv; Schmidt CF; Peterman EJ
    J Phys Chem B; 2004 May; 108(20):6479-84. PubMed ID: 18950137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.