BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 12805584)

  • 1. Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress.
    Lee JY; Lee DH
    Plant Physiol; 2003 Jun; 132(2):517-29. PubMed ID: 12805584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of SAGE technology to reveal changes in gene expression in Arabidopsis leaves undergoing cold stress.
    Jung SH; Lee JY; Lee DH
    Plant Mol Biol; 2003 Jun; 52(3):553-67. PubMed ID: 12956526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential SAGE analysis in Arabidopsis uncovers increased transcriptome complexity in response to low temperature.
    Robinson SJ; Parkin IA
    BMC Genomics; 2008 Sep; 9():434. PubMed ID: 18808718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LongSAGE analysis of the early response to cold stress in Arabidopsis leaf.
    Byun YJ; Kim HJ; Lee DH
    Planta; 2009 May; 229(6):1181-200. PubMed ID: 19252924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of gene expression under cold acclimation, deacclimation and reacclimation in Arabidopsis.
    Byun YJ; Koo MY; Joo HJ; Ha-Lee YM; Lee DH
    Physiol Plant; 2014 Oct; 152(2):256-74. PubMed ID: 24494996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ARID-HMG DNA-binding protein AtHMGB15 is required for pollen tube growth in Arabidopsis thaliana.
    Xia C; Wang YJ; Liang Y; Niu QK; Tan XY; Chu LC; Chen LQ; Zhang XQ; Ye D
    Plant J; 2014 Sep; 79(5):741-56. PubMed ID: 24923357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytosulfokine peptide signaling controls pollen tube growth and funicular pollen tube guidance in Arabidopsis thaliana.
    Stührwohldt N; Dahlke RI; Kutschmar A; Peng X; Sun MX; Sauter M
    Physiol Plant; 2015 Apr; 153(4):643-53. PubMed ID: 25174442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved expression of the Arabidopsis ACT1 and ACT 3 actin subclass in organ primordia and mature pollen.
    An YQ; Huang S; McDowell JM; McKinney EC; Meagher RB
    Plant Cell; 1996 Jan; 8(1):15-30. PubMed ID: 8597657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thellungiella: an Arabidopsis-related model plant adapted to cold temperatures.
    Griffith M; Timonin M; Wong AC; Gray GR; Akhter SR; Saldanha M; Rogers MA; Weretilnyk EA; Moffatt B
    Plant Cell Environ; 2007 May; 30(5):529-38. PubMed ID: 17407531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hypergravity stimulus on global gene expression during reproductive growth in Arabidopsis.
    Tamaoki D; Karahara I; Nishiuchi T; Wakasugi T; Yamada K; Kamisaka S
    Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():179-86. PubMed ID: 24373015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression patterns of two Arabidopsis endo-beta-1,4-glucanase genes (At3g43860, At4g39000) in reproductive development.
    Xie XJ; Huang JJ; Gao HH; Guo GQ
    Mol Biol (Mosk); 2011; 45(3):503-9. PubMed ID: 21790012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural genetic variation in acclimation capacity at sub-zero temperatures after cold acclimation at 4 degrees C in different Arabidopsis thaliana accessions.
    Le MQ; Engelsberger WR; Hincha DK
    Cryobiology; 2008 Oct; 57(2):104-12. PubMed ID: 18619434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis.
    Vogel JT; Zarka DG; Van Buskirk HA; Fowler SG; Thomashow MF
    Plant J; 2005 Jan; 41(2):195-211. PubMed ID: 15634197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene expression phenotypes of Arabidopsis associated with sensitivity to low temperatures.
    Provart NJ; Gil P; Chen W; Han B; Chang HS; Wang X; Zhu T
    Plant Physiol; 2003 Jun; 132(2):893-906. PubMed ID: 12805619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximizing the efficacy of SAGE analysis identifies novel transcripts in Arabidopsis.
    Robinson SJ; Cram DJ; Lewis CT; Parkin IA
    Plant Physiol; 2004 Oct; 136(2):3223-33. PubMed ID: 15489285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions.
    Zuther E; Schulz E; Childs LH; Hincha DK
    Plant Cell Environ; 2012 Oct; 35(10):1860-78. PubMed ID: 22512351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of GPI-anchored lipid transfer proteins in the development of seed coats and pollen in Arabidopsis thaliana.
    Edstam MM; Edqvist J
    Physiol Plant; 2014 Sep; 152(1):32-42. PubMed ID: 24460633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis.
    Déjardin A; Sokolov LN; Kleczkowski LA
    Biochem J; 1999 Dec; 344 Pt 2(Pt 2):503-9. PubMed ID: 10567234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AtMYB32 is required for normal pollen development in Arabidopsis thaliana.
    Preston J; Wheeler J; Heazlewood J; Li SF; Parish RW
    Plant J; 2004 Dec; 40(6):979-95. PubMed ID: 15584962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversion of carbon flux from gibberellin to steviol biosynthesis by over-expressing SrKA13H induced dwarfism and abnormality in pollen germination and seed set behaviour of transgenic Arabidopsis.
    Guleria P; Masand S; Yadav SK
    J Exp Bot; 2015 Jul; 66(13):3907-16. PubMed ID: 25954046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.