BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2290 related articles for article (PubMed ID: 12805693)

  • 1. Harmful freshwater algal blooms, with an emphasis on cyanobacteria.
    Paerl HW; Fulton RS; Moisander PH; Dyble J
    ScientificWorldJournal; 2001 Apr; 1():76-113. PubMed ID: 12805693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum.
    Paerl H
    Adv Exp Med Biol; 2008; 619():217-37. PubMed ID: 18461771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy.
    Paerl HW; Xu H; McCarthy MJ; Zhu G; Qin B; Li Y; Gardner WS
    Water Res; 2011 Feb; 45(5):1973-83. PubMed ID: 20934736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxic cyanobacteria in Florida waters.
    Burns J
    Adv Exp Med Biol; 2008; 619():127-37. PubMed ID: 18461767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling cyanobacterial blooms in hypertrophic Lake Taihu, China: will nitrogen reductions cause replacement of non-N2 fixing by N2 fixing taxa?
    Paerl HW; Xu H; Hall NS; Zhu G; Qin B; Wu Y; Rossignol KL; Dong L; McCarthy MJ; Joyner AR
    PLoS One; 2014; 9(11):e113123. PubMed ID: 25405474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China.
    Xu H; Paerl HW; Qin B; Zhu G; Hall NS; Wu Y
    Environ Sci Technol; 2015 Jan; 49(2):1051-9. PubMed ID: 25495555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cylindrospermopsis raciborskii dominates under very low and high nitrogen-to-phosphorus ratios.
    Chislock MF; Sharp KL; Wilson AE
    Water Res; 2014 Feb; 49():207-14. PubMed ID: 24333522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitigating the Expansion of Harmful Algal Blooms Across the Freshwater-to-Marine Continuum.
    Paerl HW; Otten TG; Kudela R
    Environ Sci Technol; 2018 May; 52(10):5519-5529. PubMed ID: 29656639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling cyanobacterial harmful blooms in freshwater ecosystems.
    Paerl HW
    Microb Biotechnol; 2017 Sep; 10(5):1106-1110. PubMed ID: 28639406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change.
    Paerl HW; Hall NS; Calandrino ES
    Sci Total Environ; 2011 Apr; 409(10):1739-45. PubMed ID: 21345482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: between simplistic scenarios and complex dynamics.
    Reichwaldt ES; Ghadouani A
    Water Res; 2012 Apr; 46(5):1372-93. PubMed ID: 22169160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial players involved in the decline of filamentous and colonial cyanobacterial blooms with a focus on fungal parasitism.
    Gerphagnon M; Macarthur DJ; Latour D; Gachon CM; Van Ogtrop F; Gleason FH; Sime-Ngando T
    Environ Microbiol; 2015 Aug; 17(8):2573-87. PubMed ID: 25818470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal dynamics of succession and growth limitation of phytoplankton for nutrients and light in a large shallow lake.
    Liu X; Chen L; Zhang G; Zhang J; Wu Y; Ju H
    Water Res; 2021 Apr; 194():116910. PubMed ID: 33601234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harmful cyanobacterial blooms: causes, consequences, and controls.
    Paerl HW; Otten TG
    Microb Ecol; 2013 May; 65(4):995-1010. PubMed ID: 23314096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate change: links to global expansion of harmful cyanobacteria.
    Paerl HW; Paul VJ
    Water Res; 2012 Apr; 46(5):1349-63. PubMed ID: 21893330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure, and ecosystem functioning.
    Amorim CA; Moura ADN
    Sci Total Environ; 2021 Mar; 758():143605. PubMed ID: 33248793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution.
    Havens KE; James RT; East TL; Smith VH
    Environ Pollut; 2003; 122(3):379-90. PubMed ID: 12547527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms.
    Paerl HW; Huisman J
    Environ Microbiol Rep; 2009 Feb; 1(1):27-37. PubMed ID: 23765717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Status, alert system, and prediction of cyanobacterial bloom in South Korea.
    Srivastava A; Ahn CY; Asthana RK; Lee HG; Oh HM
    Biomed Res Int; 2015; 2015():584696. PubMed ID: 25705675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyanobacterial bloom significantly boosts hypolimnelic anammox bacterial abundance in a subtropical stratified reservoir.
    Xue Y; Yu Z; Chen H; Yang JR; Liu M; Liu L; Huang B; Yang J
    FEMS Microbiol Ecol; 2017 Oct; 93(10):. PubMed ID: 28961823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 115.