These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 12805788)
21. Controls and forecasts of nitrate yields in forested watersheds: A view over mainland Portugal. Pacheco FA; Santos RM; Sanches Fernandes LF; Pereira MG; Cortes RM Sci Total Environ; 2015 Dec; 537():421-40. PubMed ID: 26284895 [TBL] [Abstract][Full Text] [Related]
22. Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules. Lee S; Yeo IY; Lang MW; Sadeghi AM; McCarty GW; Moglen GE; Evenson GR J Environ Manage; 2018 Oct; 223():37-48. PubMed ID: 29886149 [TBL] [Abstract][Full Text] [Related]
23. Hydrogeologic controls on the transport and fate of nitrate in ground water beneath riparian buffer zones: results from thirteen studies across the United States. Puckett LJ Water Sci Technol; 2004; 49(3):47-53. PubMed ID: 15053098 [TBL] [Abstract][Full Text] [Related]
24. Phosphorus transport through subsurface drainage and surface runoff from a flat watershed in east central Illinois, USA. Algoazany AS; Kalita PK; Czapar GF; Mitchell JK J Environ Qual; 2007; 36(3):681-93. PubMed ID: 17412904 [TBL] [Abstract][Full Text] [Related]
25. Runoff characteristics of major ionic species during rain events in forested watershed. Komai AY; Umemoto S; Inoue T Water Sci Technol; 2001; 44(7):105-12. PubMed ID: 11724475 [TBL] [Abstract][Full Text] [Related]
26. Nitrate in tile drainage of the semiarid Palouse Basin. Keller CK; Butcher CN; Smith JL; Allen-King RM J Environ Qual; 2008; 37(2):353-61. PubMed ID: 18268297 [TBL] [Abstract][Full Text] [Related]
27. Tillage impact on herbicide loss by surface runoff and lateral subsurface flow. Potter TL; Bosch DD; Strickland TC Sci Total Environ; 2015 Oct; 530-531():357-366. PubMed ID: 26057540 [TBL] [Abstract][Full Text] [Related]
28. Inputs and losses by surface runoff and subsurface leaching for pastures managed by continuous or rotational stocking. Owens LB; Barker DJ; Loerch SC; Shipitalo MJ; Bonta JV; Sulc RM J Environ Qual; 2012; 41(1):106-13. PubMed ID: 22218179 [TBL] [Abstract][Full Text] [Related]
29. Subsurface hydrological connectivity controls nitrate export flux in a hilly catchment. Xiao HB; Zhou C; Hu XD; Wang J; Wang L; Huang JQ; Yang FT; Zhao JS; Shi ZH Water Res; 2024 Apr; 253():121308. PubMed ID: 38377925 [TBL] [Abstract][Full Text] [Related]
30. Role of rainfall intensity and hydrology in nutrient transport via surface runoff. Kleinman PJ; Srinivasan MS; Dell CJ; Schmidt JP; Sharpley AN; Bryant RB J Environ Qual; 2006; 35(4):1248-59. PubMed ID: 16825444 [TBL] [Abstract][Full Text] [Related]
31. Metolachlor metabolite (MESA) reveals agricultural nitrate-N fate and transport in Choptank River watershed. McCarty GW; Hapeman CJ; Rice CP; Hively WD; McConnell LL; Sadeghi AM; Lang MW; Whitall DR; Bialek K; Downey P Sci Total Environ; 2014 Mar; 473-474():473-82. PubMed ID: 24388901 [TBL] [Abstract][Full Text] [Related]
32. Water quality of runoff from agricultural-forestry watersheds in the Geum River Basin, Korea. Kim G; Chung S; Lee C Environ Monit Assess; 2007 Nov; 134(1-3):441-52. PubMed ID: 17294267 [TBL] [Abstract][Full Text] [Related]
34. Estimates of diffuse phosphorus sources in surface waters of the United States using a spatially referenced watershed model. Alexander RB; Smith RA; Schwarz GE Water Sci Technol; 2004; 49(3):1-10. PubMed ID: 15053093 [TBL] [Abstract][Full Text] [Related]
35. Nitrate behaviors and source apportionment in an aquatic system from a watershed with intensive agricultural activities. Lu L; Cheng H; Pu X; Liu X; Cheng Q Environ Sci Process Impacts; 2015 Jan; 17(1):131-44. PubMed ID: 25418139 [TBL] [Abstract][Full Text] [Related]
36. The Shallow and Deep Hypothesis: Subsurface Vertical Chemical Contrasts Shape Nitrate Export Patterns from Different Land Uses. Zhi W; Li L Environ Sci Technol; 2020 Oct; 54(19):11915-11928. PubMed ID: 32812426 [TBL] [Abstract][Full Text] [Related]
37. Using the late spring nitrate test to reduce nitrate loss within a watershed. Jaynes DB; Dinnes DL; Meek DW; Karlen DL; Cambardella CA; Colvin TS J Environ Qual; 2004; 33(2):669-77. PubMed ID: 15074819 [TBL] [Abstract][Full Text] [Related]
38. Transport and reduction of nitrate in clayey till underneath forest and arable land. Jørgensen PR; Urup J; Helstrup T; Jensen MB; Eiland F; Vinther FP J Contam Hydrol; 2004 Sep; 73(1-4):207-26. PubMed ID: 15336795 [TBL] [Abstract][Full Text] [Related]
39. Watershed nitrogen and mercury geochemical fluxes integrate landscape factors in long-term research watersheds at Acadia National Park, Maine, USA. Kahl JS; Nelson SJ; Fernandez I; Haines T; Norton S; Wiersma GB; Jacobson G; Amirbahman A; Johnson K; Schauffler M; Rustad L; Tonnessen K; Lent R; Bank M; Elvir J; Eckhoff J; Caron H; Ruck P; Parker J; Campbell J; Manski D; Breen R; Sheehan K; Grygo A Environ Monit Assess; 2007 Mar; 126(1-3):9-25. PubMed ID: 17180436 [TBL] [Abstract][Full Text] [Related]
40. Agricultural practices influence flow regimes of headwater streams in western Iowa. Tomer MD; Meek DW; Kramer LA J Environ Qual; 2005; 34(5):1547-58. PubMed ID: 16091607 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]