These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 12805819)

  • 1. Impact of a first-order riparian zone on nitrogen removal and export from an agricultural ecosystem.
    Angier JT; McCarty GW; Gish TJ; Daughtry CS
    ScientificWorldJournal; 2001 Nov; 1 Suppl 2():642-51. PubMed ID: 12805819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of a riparian wetland on nitrate and herbicides exported from an agricultural field.
    Angier JT; McCarty GW; Rice CP; Bialek K
    J Agric Food Chem; 2002 Jul; 50(15):4424-9. PubMed ID: 12105980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal groundwater nitrate dynamics and nitrogen isotope discrimination in a riparian zone.
    Dhondt K; Boeckx P; Van Cleemput O; Hofman G; De Troch F
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(4):157-60. PubMed ID: 15954282
    [No Abstract]   [Full Text] [Related]  

  • 4. Nitrate concentrations in river waters of the upper Thames and its tributaries.
    Neal C; Jarvie HP; Neal M; Hill L; Wickham H
    Sci Total Environ; 2006 Jul; 365(1-3):15-32. PubMed ID: 16618496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil nitrogen cycle processes in urban riparian zones.
    Groffman PM; Boulware NJ; Zipperer WC; Pouyat RV; Band LE; Colosimo MF
    Environ Sci Technol; 2002 Nov; 36(21):4547-52. PubMed ID: 12433163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water quality dynamics and hydrology in nitrate loaded riparian zones in the Netherlands.
    Hefting M; Beltman B; Karssenberg D; Rebel K; van Riessen M; Spijker M
    Environ Pollut; 2006 Jan; 139(1):143-56. PubMed ID: 15996804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ground water stratification and delivery of nitrate to an incised stream under varying flow conditions.
    Böhlke JK; O'Connell ME; Prestegaard KL
    J Environ Qual; 2007; 36(3):664-80. PubMed ID: 17412903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stream and floodplain restoration impacts riparian zone hydrology of agricultural streams.
    Welsh MK; Vidon PG; McMillan SK
    Environ Monit Assess; 2020 Jan; 192(2):85. PubMed ID: 31900661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of stream restoration on denitrification in an urbanizing watershed.
    Kaushal SS; Groffman PM; Mayer PM; Striz E; Gold AJ
    Ecol Appl; 2008 Apr; 18(3):789-804. PubMed ID: 18488635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the impact of changes in landuse and management practices on the diffuse pollution and retention of nitrate in a riparian floodplain.
    Krause S; Jacobs J; Voss A; Bronstert A; Zehe E
    Sci Total Environ; 2008 Jan; 389(1):149-64. PubMed ID: 17915291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrate removal effectiveness of a riparian buffer along a small agricultural stream in western Oregon.
    Wigington PJ; Griffith SM; Field JA; Baham JE; Horwath WR; Owen J; Davis JH; Rain SC; Steiner JJ
    J Environ Qual; 2003; 32(1):162-70. PubMed ID: 12549555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. River water infiltration enhances denitrification efficiency in riparian groundwater.
    Trauth N; Musolff A; Knöller K; Kaden US; Keller T; Werban U; Fleckenstein JH
    Water Res; 2018 Mar; 130():185-199. PubMed ID: 29223089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Focused groundwater controlled feedbacks into the hyporheic zone during baseflow recession.
    Malzone JM; Lowry CS
    Ground Water; 2015; 53(2):217-26. PubMed ID: 24684212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Denitrification potential in relation to lithology in five headwater riparian zones.
    Hill AR; Vidon PG; Langat J
    J Environ Qual; 2004; 33(3):911-9. PubMed ID: 15224927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implications of hydrologic connectivity between hillslopes and riparian zones on streamflow composition.
    von Freyberg J; Radny D; Gall HE; Schirmer M
    J Contam Hydrol; 2014 Nov; 169():62-74. PubMed ID: 25106837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen dynamics at the groundwater-surface water interface of a degraded urban stream.
    Mayer PM; Groffman PM; Striz EA; Kaushal SS
    J Environ Qual; 2010; 39(3):810-23. PubMed ID: 20400577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Riparian wetland rehabilitation and beaver re-colonization impacts on hydrological processes and water quality in a lowland agricultural catchment.
    Smith A; Tetzlaff D; Gelbrecht J; Kleine L; Soulsby C
    Sci Total Environ; 2020 Jan; 699():134302. PubMed ID: 31522046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating agricultural best management practices in tile-drained subwatersheds of the Mackinaw River, Illinois.
    Lemke AM; Kirkham KG; Lindenbaum TT; Herbert ME; Tear TH; Perry WL; Herkert JR
    J Environ Qual; 2011; 40(4):1215-28. PubMed ID: 21712591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors Affecting Nitrate Concentrations in Stream Base Flow.
    Wherry SA; Tesoriero AJ; Terziotti S
    Environ Sci Technol; 2021 Jan; 55(2):902-911. PubMed ID: 33356185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term nitrate response in shallow groundwater to agricultural N regulations in Denmark.
    Hansen B; Thorling L; Kim H; Blicher-Mathiesen G
    J Environ Manage; 2019 Jun; 240():66-74. PubMed ID: 30928796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.