These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 1280588)

  • 1. Primary chemical and physical characterization of acute toxic components in wastewaters.
    Svenson A; Linlin Z; Kaj L
    Ecotoxicol Environ Saf; 1992 Oct; 24(2):234-42. PubMed ID: 1280588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute toxicity of cadmium, copper, zinc, ammonia, 3,3'-dichlorobenzidine, 2,6-dichloro-4-nitroaniline, methylene chloride, and 2,4,6-trichlorophenol to juvenile grass shrimp and killifish.
    Burton DT; Fisher DJ
    Bull Environ Contam Toxicol; 1990 May; 44(5):776-83. PubMed ID: 2344484
    [No Abstract]   [Full Text] [Related]  

  • 3. Photochemical conversion of chlorinated phenolic substances in aquatic media as studied by AOX and Microtox tests.
    Svenson A; Kaj L
    Sci Total Environ; 1989 Jan; 78():89-98. PubMed ID: 2717929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study on toxicity identification of industrial effluents using Daphnia magna.
    Yi X; Kim E; Jo HJ; Han T; Jung J
    Bull Environ Contam Toxicol; 2011 Sep; 87(3):319-23. PubMed ID: 21761172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple regression analysis of toxic interactions: application to the Microtox test and general comments.
    Bois F; Vaillant M; Vasseur P
    Bull Environ Contam Toxicol; 1986 May; 36(5):707-14. PubMed ID: 3708174
    [No Abstract]   [Full Text] [Related]  

  • 6. Identification of polar toxicants in industrial wastewaters using toxicity-based fractionation with liquid chromatography/mass spectrometry.
    Castillo M; Barceló D
    Anal Chem; 1999 Sep; 71(17):3769-76. PubMed ID: 10489526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Procedure to screen illicit discharge of toxic substances in septic sludge received at a wastewater treatment plant.
    Robidoux PY; Lopez-Gastey J; Choucri A; Sunahara GI
    Ecotoxicol Environ Saf; 1998 Jan; 39(1):31-40. PubMed ID: 9515073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute aquatic toxicity of protolyzing substances studied as the microtox effect.
    Svenson A; Zhang L
    Ecotoxicol Environ Saf; 1995 Apr; 30(3):283-8. PubMed ID: 7541342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of chlorophenols from wastewater using red mud: an aluminum industry waste.
    Gupta VK; Ali I; Saini VK
    Environ Sci Technol; 2004 Jul; 38(14):4012-8. PubMed ID: 15298213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cytotoxic and genotoxic potential of surface water and wastewater effluents as determined by bioluminescence, umu-assays and selected biomarkers.
    Dizer H; Wittekindt E; Fischer B; Hansen PD
    Chemosphere; 2002 Jan; 46(2):225-33. PubMed ID: 11827279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative structure-activity relationships and mixture toxicity of organic chemicals in Photobacterium phosphoreum: the Microtox test.
    Hermens J; Busser F; Leeuwangh P; Musch A
    Ecotoxicol Environ Saf; 1985 Feb; 9(1):17-25. PubMed ID: 3987587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An evaluation of the toxicity of contaminated sediments from Waukegan Harbor, Illinois, following remediation.
    Kemble NE; Hardesty DG; Ingersoll CG; Johnson BT; Dwyer FJ; MacDonald DD
    Arch Environ Contam Toxicol; 2000 Nov; 39(4):452-61. PubMed ID: 11031305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extractive membrane bioreactors: a new process technology for detoxifying chemical industry wastewaters.
    Livingston AG
    J Chem Technol Biotechnol; 1994 Jun; 60(2):117-24. PubMed ID: 7764961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecotoxicological assessment of industrial wastewaters in Trancão River Basin (Portugal).
    Picado A; Mendonça E; Silva L; Paixão SM; Brito F; Cunha MA; Leitão S; Moura I; Hernan R
    Environ Toxicol; 2008 Aug; 23(4):466-72. PubMed ID: 18214883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the toxicity of complex mixtures using artificial neural networks.
    Gagné F; Blaise C
    Chemosphere; 1997 Sep; 35(6):1343-63. PubMed ID: 9308163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactive toxic effects of heavy metals and humic acids on Vibrio fischeri.
    Tsiridis V; Petala M; Samaras P; Hadjispyrou S; Sakellaropoulos G; Kungolos A
    Ecotoxicol Environ Saf; 2006 Jan; 63(1):158-67. PubMed ID: 15939470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Influential factors on the toxicity of pentachlorophenol sodium with MICROTOX system in water].
    Shi W; Niu JF; Yu G
    Huan Jing Ke Xue; 2004 May; 25(3):44-7. PubMed ID: 15327251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of specific organic contaminants in different units of a chemical production site.
    Dsikowitzky L; Botalova O; al Sandouk-Lincke NA; Schwarzbauer J
    Environ Sci Process Impacts; 2014 Jul; 16(7):1779-89. PubMed ID: 24840322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ATP luminescence method for direct toxicity assessment of pollutants impacting on the activated sewage sludge process.
    Dalzell DJ; Christofi N
    Water Res; 2002 Mar; 36(6):1493-502. PubMed ID: 11996339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New algal enzyme bioassay for the rapid assessment of aquatic toxicity.
    Peterson SM; Stauber JL
    Bull Environ Contam Toxicol; 1996 May; 56(5):750-7. PubMed ID: 8661858
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.