These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12805932)

  • 1. Periphyton function in lake ecosystems.
    Vadeboncoeur Y; Steinman AD
    ScientificWorldJournal; 2002 May; 2():1449-68. PubMed ID: 12805932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light.
    Vadeboncoeur Y; Peterson G; Vander Zanden MJ; Kalff J
    Ecology; 2008 Sep; 89(9):2542-52. PubMed ID: 18831175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient cycling by fish supports relatively more primary production as lake productivity increases.
    Vanni MJ; Bowling AM; Dickman EM; Hale RS; Higgins KA; Horgan MJ; Knoll LB; Renwick WH; Stein RA
    Ecology; 2006 Jul; 87(7):1696-709. PubMed ID: 16922320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bottom-up and top-down effects of browning and warming on shallow lake food webs.
    Vasconcelos FR; Diehl S; Rodríguez P; Hedström P; Karlsson J; Byström P
    Glob Chang Biol; 2019 Feb; 25(2):504-521. PubMed ID: 30430702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model study on the role of wetland zones in lake eutrophication and restoration.
    Janse JH; Ligtvoet W; Van Tol S; Bresser AH
    ScientificWorldJournal; 2001 Nov; 1 Suppl 2():605-14. PubMed ID: 12805815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus Availability Alters the Effects of Silver Nanoparticles on Periphyton Growth and Stoichiometry.
    Norman BC; Xenopoulos MA; Braun D; Frost PC
    PLoS One; 2015; 10(6):e0129328. PubMed ID: 26075715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cascading influences of grassland degradation on nutrient limitation in a high mountain lake and its inflow streams.
    Ren Z; Niu D; Ma P; Wang Y; Fu H; Elser JJ
    Ecology; 2019 Aug; 100(8):e02755. PubMed ID: 31087341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential for large-bodied zooplankton and dreissenids to alter the productivity and autotrophic structure of lakes.
    Higgins SN; Althouse B; Devlin SP; Vadeboncoeur Y; Vander Zanden MJ
    Ecology; 2014 Aug; 95(8):2257-67. PubMed ID: 25230476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light limitation of nutrient-poor lake ecosystems.
    Karlsson J; Byström P; Ask J; Ask P; Persson L; Jansson M
    Nature; 2009 Jul; 460(7254):506-9. PubMed ID: 19626113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How do small dams alter river food webs? A food quality perspective along the aquatic food web continuum.
    Huang J; Guo F; Burford MA; Kainz M; Li F; Gao W; Ouyang X; Zhang Y
    J Environ Manage; 2024 Mar; 355():120501. PubMed ID: 38437746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential selenium uptake by periphyton in boreal lake ecosystems.
    Oldach MD; Graves SD; Janz DM
    Environ Pollut; 2022 Jul; 305():119304. PubMed ID: 35430311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benthic-planktonic coupling, regime shifts, and whole-lake primary production in shallow lakes.
    Genkai-Kato M; Vadeboncoeur Y; Liboriussen L; Jeppesen E
    Ecology; 2012 Mar; 93(3):619-31. PubMed ID: 22624216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water quality in simulated eutrophic shallow lakes in the presence of periphyton under different flow conditions.
    Chen S; Yang G; Lu J; Wang L
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4584-4595. PubMed ID: 29192398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of water quality and hydrologic drivers on periphyton colonization on Sparganium erectum in two Turkish lakes with different mixing regimes.
    Albay M; Akçaalan R
    Environ Monit Assess; 2008 Nov; 146(1-3):171-81. PubMed ID: 18188672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative strengths of benthic algal nutrient and grazer limitation along a lake productivity gradient.
    Darcy-Hall TL
    Oecologia; 2006 Jul; 148(4):660-71. PubMed ID: 16555091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Algae mediate submerged macrophyte response to nutrient and dissolved inorganic carbon loading: a mesocosm study on different species.
    Xie D; Yu D; You WH; Wang LG
    Chemosphere; 2013 Oct; 93(7):1301-8. PubMed ID: 23958444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The long-term changes in food web structure and ecosystem functioning of a shallow lake: Implications for the lake management.
    Zhang X; Yi Y; Yang Z
    J Environ Manage; 2022 Jan; 301():113804. PubMed ID: 34626952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blinded by the light? Nearshore energy pathway coupling and relative predator biomass increase with reduced water transparency across lakes.
    Tunney TD; McCann KS; Jarvis L; Lester NP; Shuter BJ
    Oecologia; 2018 Apr; 186(4):1031-1041. PubMed ID: 29388026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benthic algae compensate for phytoplankton losses in large aquatic ecosystems.
    Brothers S; Vadeboncoeur Y; Sibley P
    Glob Chang Biol; 2016 Dec; 22(12):3865-3873. PubMed ID: 27029572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioaccumulation Dynamics of Arsenate at the Base of Aquatic Food Webs.
    Lopez AR; Hesterberg DR; Funk DH; Buchwalter DB
    Environ Sci Technol; 2016 Jun; 50(12):6556-64. PubMed ID: 27223406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.