These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
769 related articles for article (PubMed ID: 12805947)
1. Zooplankton structure and potential food web interactions in the plankton of a subtropical chain-of-lakes. Havens KE ScientificWorldJournal; 2002 Apr; 2():926-42. PubMed ID: 12805947 [TBL] [Abstract][Full Text] [Related]
2. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management. He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399 [TBL] [Abstract][Full Text] [Related]
3. [Predators, resources, and trophic chains in the regulation of plankton population and biomass in oligothrophic lakes]. Bizina EV Zh Obshch Biol; 2000; 61(6):601-15. PubMed ID: 11190562 [TBL] [Abstract][Full Text] [Related]
4. Sensitivity of plankton indices to lake trophic conditions. Ochocka A; Pasztaleniec A Environ Monit Assess; 2016 Nov; 188(11):622. PubMed ID: 27752916 [TBL] [Abstract][Full Text] [Related]
5. Factors affecting annual occurrence, bioaccumulation, and biomagnification of polycyclic aromatic hydrocarbons in plankton food webs of subtropical eutrophic lakes. Tao Y; Yu J; Liu X; Xue B; Wang S Water Res; 2018 Apr; 132():1-11. PubMed ID: 29304443 [TBL] [Abstract][Full Text] [Related]
6. The feeding habits of small-bodied fishes mediate the strength of top-down effects on plankton and water quality in shallow subtropical lakes. Guo C; Li S; Ke J; Liao C; Hansen AG; Jeppesen E; Zhang T; Li W; Liu J Water Res; 2023 Apr; 233():119705. PubMed ID: 36801569 [TBL] [Abstract][Full Text] [Related]
7. Precipitation and temperature drive seasonal variation in bioaccumulation of polycyclic aromatic hydrocarbons in the planktonic food webs of a subtropical shallow eutrophic lake in China. Tao Y; Yu J; Xue B; Yao S; Wang S Sci Total Environ; 2017 Apr; 583():447-457. PubMed ID: 28110880 [TBL] [Abstract][Full Text] [Related]
8. Algal Diet of Small-Bodied Crustacean Zooplankton in a Cyanobacteria-Dominated Eutrophic Lake. Tõnno I; Agasild H; Kõiv T; Freiberg R; Nõges P; Nõges T PLoS One; 2016; 11(4):e0154526. PubMed ID: 27124652 [TBL] [Abstract][Full Text] [Related]
9. Impacts of zooplankton composition and algal enrichment on the accumulation of mercury in an experimental freshwater food web. Pickhardt PC; Folt CL; Chen CY; Klaue B; Blum JD Sci Total Environ; 2005 Mar; 339(1-3):89-101. PubMed ID: 15740761 [TBL] [Abstract][Full Text] [Related]
10. Differential bioaccumulation of mercury by zooplankton taxa in a mercury-contaminated reservoir Guizhou China. Long SX; Hamilton PB; Yang Y; Wang S; Huang WD; Chen C; Tao R Environ Pollut; 2018 Aug; 239():147-160. PubMed ID: 29653305 [TBL] [Abstract][Full Text] [Related]
11. Lowered nutritional quality of plankton caused by global environmental changes. Lau DCP; Jonsson A; Isles PDF; Creed IF; Bergström AK Glob Chang Biol; 2021 Dec; 27(23):6294-6306. PubMed ID: 34520606 [TBL] [Abstract][Full Text] [Related]
12. What Underpins the Trophic Networks of the Plankton in Shallow Oxbow Lakes? Kosiba J; Wilk-Woźniak E; Krztoń W; Strzesak M; Pociecha A; Walusiak E; Pudaś K; Szarek-Gwiazda E Microb Ecol; 2017 Jan; 73(1):17-28. PubMed ID: 27544677 [TBL] [Abstract][Full Text] [Related]
13. Trophic status affects the distribution of polycyclic aromatic hydrocarbons in the water columns, surface sediments, and plankton of twenty Chinese lakes. Tao Y; Liu D Environ Pollut; 2019 Sep; 252(Pt A):666-674. PubMed ID: 31185355 [TBL] [Abstract][Full Text] [Related]
14. Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton. Sommer U; Sommer F Oecologia; 2006 Mar; 147(2):183-94. PubMed ID: 16341887 [TBL] [Abstract][Full Text] [Related]
15. Horizontal distribution of pelagic crustacean zooplankton biomass and body size in contrasting habitat types in Lake Poyang, China. Liu B; Liu J; Jeppesen E; Chen Y; Liu X; Zhang W Environ Sci Pollut Res Int; 2019 Jan; 26(3):2270-2280. PubMed ID: 30465241 [TBL] [Abstract][Full Text] [Related]
16. Plankton food web responses to experimental nutrient additions in a subtropical lake. Havens KE; East TL ScientificWorldJournal; 2006 Jul; 6():827-33. PubMed ID: 16862351 [TBL] [Abstract][Full Text] [Related]
17. Environmental factors controlling seasonal and spatial variability of zooplankton in thermokarst lakes along a permafrost gradient of Western Siberia. Noskov YA; Manasypov RM; Ermolaeva NI; Antonets DV; Shirokova LS; Pokrovsky OS Sci Total Environ; 2024 Apr; 922():171284. PubMed ID: 38432389 [TBL] [Abstract][Full Text] [Related]
18. [Community characteristics of crustacean zooplankton and its relationship with environmental factors in Suzhou Industrial Park, Jiangsu Province, China]. Yu TT; Zhu Y; Xu L; Zhao L; Qian WJ; Chang Q; Wang GX; Chen JQ Ying Yong Sheng Tai Xue Bao; 2015 Aug; 26(8):2534-42. PubMed ID: 26685619 [TBL] [Abstract][Full Text] [Related]
19. Impact of anthropogenic activities on water quality and plankton communities in the Day River (Red River Delta, Vietnam). Hoang HTT; Duong TT; Nguyen KT; Le QTP; Luu MTN; Trinh DA; Le AH; Ho CT; Dang KD; Némery J; Orange D; Klein J Environ Monit Assess; 2018 Jan; 190(2):67. PubMed ID: 29308572 [TBL] [Abstract][Full Text] [Related]
20. Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Sommer U; Sommer F; Santer B; Zöllner E; Jürgens K; Jamieson C; Boersma M; Gocke K Oecologia; 2003 May; 135(4):639-47. PubMed ID: 16228259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]