BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 12807355)

  • 1. Predicting the genotoxicity of thiophene derivatives from molecular structure.
    Mosier PD; Jurs PC; Custer LL; Durham SK; Pearl GM
    Chem Res Toxicol; 2003 Jun; 16(6):721-32. PubMed ID: 12807355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification structure-activity relationship (CSAR) studies for prediction of genotoxicity of thiophene derivatives.
    Du H; Wang J; Watzl J; Zhang X; Hu Z
    Toxicol Lett; 2008 Feb; 177(1):10-9. PubMed ID: 18243595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the genotoxicity of polycyclic aromatic compounds from molecular structure with different classifiers.
    He L; Jurs PC; Custer LL; Durham SK; Pearl GM
    Chem Res Toxicol; 2003 Dec; 16(12):1567-80. PubMed ID: 14680371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the genotoxicity of secondary and aromatic amines using data subsetting to generate a model ensemble.
    Mattioni BE; Kauffman GW; Jurs PC; Custer LL; Durham SK; Pearl GM
    J Chem Inf Comput Sci; 2003; 43(3):949-63. PubMed ID: 12767154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probabilistic neural network multiple classifier system for predicting the genotoxicity of quinolone and quinoline derivatives.
    He L; Jurs PC; Kreatsoulas C; Custer LL; Durham SK; Pearl GM
    Chem Res Toxicol; 2005 Mar; 18(3):428-40. PubMed ID: 15777083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of inhibitors of protein tyrosine phosphatase 1B using molecular structure based descriptors.
    Patankar SJ; Jurs PC
    J Chem Inf Comput Sci; 2003; 43(3):885-99. PubMed ID: 12767147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of binary classification of structural chromosome aberrations for a diverse set of organic compounds from molecular structure.
    Serra JR; Thompson ED; Jurs PC
    Chem Res Toxicol; 2003 Feb; 16(2):153-63. PubMed ID: 12588186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three new consensus QSAR models for the prediction of Ames genotoxicity.
    Votano JR; Parham M; Hall LH; Kier LB; Oloff S; Tropsha A; Xie Q; Tong W
    Mutagenesis; 2004 Sep; 19(5):365-77. PubMed ID: 15388809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of genotoxicity of chemical compounds by statistical learning methods.
    Li H; Ung CY; Yap CW; Xue Y; Li ZR; Cao ZW; Chen YZ
    Chem Res Toxicol; 2005 Jun; 18(6):1071-80. PubMed ID: 15962942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some molecular descriptors for non-specific chromosomal genotoxicity based on hydrophobic interactions.
    Dorn SB; Degen GH; Bolt HM; van der Louw J; van Acker FA; van den Dobbelsteen DJ; Lommerse JP
    Arch Toxicol; 2008 May; 82(5):333-8. PubMed ID: 17992515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of tyrosinase inhibition activity using atom-based bilinear indices.
    Marrero-Ponce Y; Khan MT; Casañola Martín GM; Ather A; Sultankhodzhaev MN; Torrens F; Rotondo R
    ChemMedChem; 2007 Apr; 2(4):449-78. PubMed ID: 17366651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The SOS function-inducing activity of the new nitrothiophenic derivatives in Escherichia coli.
    da Silva KV; Mester B; Henriques JA
    Mutat Res; 1994 Mar; 305(2):119-26. PubMed ID: 7510020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of probabilistic neural networks to classify the active compounds in medicinal plants.
    Xue CX; Zhang XY; Liu MC; Hu ZD; Fan BT
    J Pharm Biomed Anal; 2005 Jul; 38(3):497-507. PubMed ID: 15925251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotoxic activity of 3-[3-phenyl-1,2,4-oxadiazol-5-yl] propionic acid and its peptidyl derivatives determined by Ames and SOS response tests.
    Leite AC; Vieira RF; de M Moreira DR; Brondani DJ; Srivastava RM; da Silva VF; de Morais Júnior MA
    Mutat Res; 2005 Dec; 588(2):166-71. PubMed ID: 16325458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using general regression and probabilistic neural networks to predict human intestinal absorption with topological descriptors derived from two-dimensional chemical structures.
    Niwa T
    J Chem Inf Comput Sci; 2003; 43(1):113-9. PubMed ID: 12546543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of diverse organic compounds that induce chromosomal aberrations in Chinese hamster cells.
    McElroy NR; Thompson ED; Jurs PC
    J Chem Inf Comput Sci; 2003; 43(6):2111-9. PubMed ID: 14632463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-chiral quadratic indices of the 'molecular pseudograph's atom adjacency matrix' and their application to central chirality codification: classification of ACE inhibitors and prediction of sigma-receptor antagonist activities.
    Ponce YM; Diaz HG; Zaldivar VR; Torrens F; Castro EA
    Bioorg Med Chem; 2004 Oct; 12(20):5331-42. PubMed ID: 15388160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QSAR and classification of murine and human soluble epoxide hydrolase inhibition by urea-like compounds.
    McElroy NR; Jurs PC; Morisseau C; Hammock BD
    J Med Chem; 2003 Mar; 46(6):1066-80. PubMed ID: 12620084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of acute mammalian toxicity of organophosphorus pesticide compounds from molecular structure.
    Eldred DV; Jurs PC
    SAR QSAR Environ Res; 1999; 10(2-3):75-99. PubMed ID: 10491847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple and alpha,beta-unsaturated aldehydes: correct prediction of genotoxic activity through structure-activity relationship models.
    Benigni R; Conti L; Crebelli R; Rodomonte A; Vari' MR
    Environ Mol Mutagen; 2005 Dec; 46(4):268-80. PubMed ID: 15991240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.