BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 12807766)

  • 1. Delineating the requirements for spontaneous DNA damage resistance pathways in genome maintenance and viability in Saccharomyces cerevisiae.
    Morey NJ; Doetsch PW; Jinks-Robertson S
    Genetics; 2003 Jun; 164(2):443-55. PubMed ID: 12807766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous DNA damage in Saccharomyces cerevisiae elicits phenotypic properties similar to cancer cells.
    Evert BA; Salmon TB; Song B; Jingjing L; Siede W; Doetsch PW
    J Biol Chem; 2004 May; 279(21):22585-94. PubMed ID: 15020594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast base excision repair: interconnections and networks.
    Doetsch PW; Morey NJ; Swanson RL; Jinks-Robertson S
    Prog Nucleic Acid Res Mol Biol; 2001; 68():29-39. PubMed ID: 11554305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA repair defects channel interstrand DNA cross-links into alternate recombinational and error-prone repair pathways.
    Saffran WA; Ahmed S; Bellevue S; Pereira G; Patrick T; Sanchez W; Thomas S; Alberti M; Hearst JE
    J Biol Chem; 2004 Aug; 279(35):36462-9. PubMed ID: 15213235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae.
    Boiteux S; Guillet M
    DNA Repair (Amst); 2004 Jan; 3(1):1-12. PubMed ID: 14697754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the error-free damage bypass postreplication repair pathway in the maintenance of genomic stability.
    Smirnova M; Klein HL
    Mutat Res; 2003 Nov; 532(1-2):117-35. PubMed ID: 14643433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccharomyces cerevisiae DNA repair pathways involved in repair of lesions induced by mixed ternary mononuclear Cu(II) complexes based on valproic acid with 1,10-phenanthroline or 2,2'- bipyridine ligands.
    Rodrigues GB; Dos Santos Silveira P; Machado M; Guecheva TN; Pich CT; Roesch-Ely M; Moura S; Dumas F; de Oliveira IM; Henriques JAP
    Mutat Res Genet Toxicol Environ Mutagen; 2021; 868-869():503390. PubMed ID: 34454693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low cytotoxicity of ecteinascidin 743 in yeast lacking the major endonucleolytic enzymes of base and nucleotide excision repair pathways.
    Soares DG; Poletto NP; Bonatto D; Salvador M; Schwartsmann G; Henriques JA
    Biochem Pharmacol; 2005 Jul; 70(1):59-69. PubMed ID: 15913564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide excision repair deficiency causes elevated levels of chromosome gain in Saccharomyces cerevisiae.
    Howlett NG; Schiestl RH
    DNA Repair (Amst); 2004 Feb; 3(2):127-34. PubMed ID: 14706346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae.
    Swanson RL; Morey NJ; Doetsch PW; Jinks-Robertson S
    Mol Cell Biol; 1999 Apr; 19(4):2929-35. PubMed ID: 10082560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous mutation, oxidative DNA damage, and the roles of base and nucleotide excision repair in the yeast Saccharomyces cerevisiae.
    Scott AD; Neishabury M; Jones DH; Reed SH; Boiteux S; Waters R
    Yeast; 1999 Feb; 15(3):205-18. PubMed ID: 10077187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae.
    Broomfield S; Hryciw T; Xiao W
    Mutat Res; 2001 Aug; 486(3):167-84. PubMed ID: 11459630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The genome-wide rate and spectrum of spontaneous mutations differ between haploid and diploid yeast.
    Sharp NP; Sandell L; James CG; Otto SP
    Proc Natl Acad Sci U S A; 2018 May; 115(22):E5046-E5055. PubMed ID: 29760081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The yeast Shu complex couples error-free post-replication repair to homologous recombination.
    Ball LG; Zhang K; Cobb JA; Boone C; Xiao W
    Mol Microbiol; 2009 Jul; 73(1):89-102. PubMed ID: 19496932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of the MAG1 DNA glycosylase gene suppresses alkylation-induced killing and mutagenesis in yeast cells lacking AP endonucleases.
    Xiao W; Chow BL; Hanna M; Doetsch PW
    Mutat Res; 2001 Dec; 487(3-4):137-47. PubMed ID: 11738940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergism between base excision repair, mediated by the DNA glycosylases Ntg1 and Ntg2, and nucleotide excision repair in the removal of oxidatively damaged DNA bases in Saccharomyces cerevisiae.
    Gellon L; Barbey R; Auffret van der Kemp P; Thomas D; Boiteux S
    Mol Genet Genomics; 2001 Aug; 265(6):1087-96. PubMed ID: 11523781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide map of Apn1 binding sites under oxidative stress in Saccharomyces cerevisiae.
    Morris LP; Conley AB; Degtyareva N; Jordan IK; Doetsch PW
    Yeast; 2017 Nov; 34(11):447-458. PubMed ID: 28752642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Requirement of RAD52 group genes for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae.
    Gangavarapu V; Prakash S; Prakash L
    Mol Cell Biol; 2007 Nov; 27(21):7758-64. PubMed ID: 17785441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UBC13, a DNA-damage-inducible gene, is a member of the error-free postreplication repair pathway in Saccharomyces cerevisiae.
    Brusky J; Zhu Y; Xiao W
    Curr Genet; 2000 Mar; 37(3):168-74. PubMed ID: 10794173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of a human cytochrome p450 in yeast permits analysis of pathways for response to and repair of aflatoxin-induced DNA damage.
    Guo Y; Breeden LL; Zarbl H; Preston BD; Eaton DL
    Mol Cell Biol; 2005 Jul; 25(14):5823-33. PubMed ID: 15988000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.