These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 1280836)

  • 1. Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea.
    Kros CJ; Rüsch A; Richardson GP
    Proc Biol Sci; 1992 Aug; 249(1325):185-93. PubMed ID: 1280836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transduction without tip links in cochlear hair cells is mediated by ion channels with permeation properties distinct from those of the mechano-electrical transducer channel.
    Marcotti W; Corns LF; Desmonds T; Kirkwood NK; Richardson GP; Kros CJ
    J Neurosci; 2014 Apr; 34(16):5505-14. PubMed ID: 24741041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gating properties of the mechano-electrical transducer channel in the dissociated vestibular hair cell of the chick.
    Ohmori H
    J Physiol; 1987 Jun; 387():589-609. PubMed ID: 3656183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The actions of calcium on the mechano-electrical transducer current of turtle hair cells.
    Crawford AC; Evans MG; Fettiplace R
    J Physiol; 1991 Mar; 434():369-98. PubMed ID: 1708822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechano-electrical transduction in mice lacking the alpha-subunit of the epithelial sodium channel.
    Rüsch A; Hummler E
    Hear Res; 1999 May; 131(1-2):170-6. PubMed ID: 10355613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic basis of membrane potential in outer hair cells of guinea pig cochlea.
    Ashmore JF; Meech RW
    Nature; 1986 Jul 24-30; 322(6077):368-71. PubMed ID: 2426595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stretch sensitivity of the lateral wall of the auditory outer hair cell from the guinea pig.
    Iwasa KH; Li MX; Jia M; Kachar B
    Neurosci Lett; 1991 Dec; 133(2):171-4. PubMed ID: 1726184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantitative comparison of mechanoelectrical transduction in vestibular and auditory hair cells of neonatal mice.
    Géléoc GS; Lennan GW; Richardson GP; Kros CJ
    Proc Biol Sci; 1997 Apr; 264(1381):611-21. PubMed ID: 9149428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in mechano-transducer channel kinetics underlie tonotopic distribution of fast adaptation in auditory hair cells.
    Ricci A
    J Neurophysiol; 2002 Apr; 87(4):1738-48. PubMed ID: 11929895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanosensitivity of mammalian auditory hair cells in vitro.
    Russell IJ; Richardson GP; Cody AR
    Nature; 1986 May 29-Jun 4; 321(6069):517-9. PubMed ID: 3713830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TRPML3 mutations cause impaired mechano-electrical transduction and depolarization by an inward-rectifier cation current in auditory hair cells of varitint-waddler mice.
    van Aken AF; Atiba-Davies M; Marcotti W; Goodyear RJ; Bryant JE; Richardson GP; Noben-Trauth K; Kros CJ
    J Physiol; 2008 Nov; 586(22):5403-18. PubMed ID: 18801844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechano-electrical transduction currents in isolated vestibular hair cells of the chick.
    Ohmori H
    J Physiol; 1985 Feb; 359():189-217. PubMed ID: 2582113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Block by amiloride and its derivatives of mechano-electrical transduction in outer hair cells of mouse cochlear cultures.
    Rüsch A; Kros CJ; Richardson GP
    J Physiol; 1994 Jan; 474(1):75-86. PubMed ID: 7516972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transduction channel of hair cells from the bull-frog characterized by noise analysis.
    Holton T; Hudspeth AJ
    J Physiol; 1986 Jun; 375():195-227. PubMed ID: 2432221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contribution of TMC1 to adaptation of mechanoelectrical transduction channels in cochlear outer hair cells.
    Goldring AC; Beurg M; Fettiplace R
    J Physiol; 2019 Dec; 597(24):5949-5961. PubMed ID: 31633194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model for signal transmission in an ear having hair cells with free-standing stereocilia. IV. Mechanoelectric transduction stage.
    Weiss TF; Leong R
    Hear Res; 1985; 20(2):175-95. PubMed ID: 4086382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells.
    Kennedy HJ; Evans MG; Crawford AC; Fettiplace R
    Nat Neurosci; 2003 Aug; 6(8):832-6. PubMed ID: 12872124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hair Bundle Stimulation Mode Modifies Manifestations of Mechanotransduction Adaptation.
    Caprara GA; Mecca AA; Wang Y; Ricci AJ; Peng AW
    J Neurosci; 2019 Nov; 39(46):9098-9106. PubMed ID: 31578232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single K+ channel properties in cultured mouse Schwann cells: conductance and kinetics.
    Verkhratsky A; Hoppe D; Kettenmann H
    J Neurosci Res; 1991 Feb; 28(2):200-9. PubMed ID: 2033649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear mechanical responses of mouse cochlear hair bundles.
    Russell IJ; Kössl M; Richardson GP
    Proc Biol Sci; 1992 Dec; 250(1329):217-27. PubMed ID: 1362990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.