These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 12808596)
21. Light and transmission electron microscopic studies following frontal sinus obliteration with ionomer cement in cats. Dazert S; Muss WH Eur Arch Otorhinolaryngol; 1995; 252(6):332-5. PubMed ID: 8679150 [TBL] [Abstract][Full Text] [Related]
22. Injectable bioactive glass/biodegradable polymer composite for bone and cartilage reconstruction: concept and experimental outcome with thermoplastic composites of poly(epsilon-caprolactone-co-D,L-lactide) and bioactive glass S53P4. Aho AJ; Tirri T; Kukkonen J; Strandberg N; Rich J; Seppälä J; Yli-Urpo A J Mater Sci Mater Med; 2004 Oct; 15(10):1165-73. PubMed ID: 15516880 [TBL] [Abstract][Full Text] [Related]
23. Bone formation and degradation behavior of nanocrystalline hydroxyapatite with or without collagen-type 1 in osteoporotic bone defects - an experimental study in osteoporotic goats. Alt V; Cheung WH; Chow SK; Thormann U; Cheung EN; Lips KS; Schnettler R; Leung KS Injury; 2016 Jun; 47 Suppl 2():S58-65. PubMed ID: 27338229 [TBL] [Abstract][Full Text] [Related]
24. Capability of new bone formation with a mixture of hydroxyapatite and beta-tricalcium phosphate granules. Sanda M; Shiota M; Fujii M; Kon K; Fujimori T; Kasugai S Clin Oral Implants Res; 2015 Dec; 26(12):1369-74. PubMed ID: 25156136 [TBL] [Abstract][Full Text] [Related]
25. Evaluating optimal combination of clodronate and bioactive glass for dental application. Rosenqvist K; Airaksinen S; Vehkamäki M; Juppo AM Int J Pharm; 2014 Jul; 468(1-2):112-20. PubMed ID: 24726634 [TBL] [Abstract][Full Text] [Related]
26. Polymethylmethacrylate composites: disturbed bone formation at the surface of bioactive glass and hydroxyapatite. Heikkilä JT; Aho AJ; Kangasniemi I; Yli-Urpo A Biomaterials; 1996 Sep; 17(18):1755-60. PubMed ID: 8879512 [TBL] [Abstract][Full Text] [Related]
27. Hydroxyapatite cranioplasty: 2. Clinical experience with a new quick-setting material. Eppley BL; Hollier L; Stal S J Craniofac Surg; 2003 Mar; 14(2):209-14. PubMed ID: 12621292 [TBL] [Abstract][Full Text] [Related]
28. Bioactive glass versus hydroxylapatite in reconstruction of osteochondral defects in the rabbit. Heikkilä JT; Aho AJ; Yli-Urpo A; Andersson OH; Aho HJ; Happonen RP Acta Orthop Scand; 1993 Dec; 64(6):678-82. PubMed ID: 8291417 [TBL] [Abstract][Full Text] [Related]
29. Bone morphogenic protein expression and bone formation are induced by bioactive glass S53P4 scaffolds in vivo. Björkenheim R; Strömberg G; Ainola M; Uppstu P; Aalto-Setälä L; Hupa L; Pajarinen J; Lindfors NC J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):847-857. PubMed ID: 30194906 [TBL] [Abstract][Full Text] [Related]
30. Usefulness of vascularized galeal frontalis myofascial flap as treatment for postoperative infection in frontal sinus fracture. Kim YJ; Kim HR; Jun YJ; Seo BC J Craniofac Surg; 2011 Sep; 22(5):1968-71. PubMed ID: 21959485 [TBL] [Abstract][Full Text] [Related]
31. Histopathological, histomorphometrical, and radiological evaluations of hydroxyapatite/bioactive glass and fluorapatite/bioactive glass nanocomposite foams as cell scaffolds in rat tibia: an in vivo study. Seyedmajidi M; Haghanifar S; Hajian-Tilaki K; Seyedmajidi S Biomed Mater; 2018 Jan; 13(2):025015. PubMed ID: 29133624 [TBL] [Abstract][Full Text] [Related]
33. The role of autogeneic bone marrow in the repair of a skull trephine defect filled with hydroxyapatite granules in the rabbit. Lindholm TC; Gao TJ; Lindholm TS Int J Oral Maxillofac Surg; 1994 Oct; 23(5):306-11. PubMed ID: 7890976 [TBL] [Abstract][Full Text] [Related]
34. Bone formation in rabbit cancellous bone defects filled with bioactive glass granules. Heikkilä JT; Aho HJ; Yli-Urpo A; Happonen RP; Aho AJ Acta Orthop Scand; 1995 Oct; 66(5):463-7. PubMed ID: 7484131 [TBL] [Abstract][Full Text] [Related]
35. Frontal sinus obliteration using a laterally based pedicled pericranial flap. Ducic Y; Stone TL Laryngoscope; 1999 Apr; 109(4):541-5. PubMed ID: 10201737 [TBL] [Abstract][Full Text] [Related]
36. Comparison Study of Three Hydroxyapatite-Based Bone Substitutes in a Calvarial Defect Model in Rabbits. Xu A; Zhou C; Qi W; He F Int J Oral Maxillofac Implants; 2019; 34(2):434–442. PubMed ID: 30703185 [TBL] [Abstract][Full Text] [Related]
37. Comparison of biomaterial implants in the dental socket: histological analysis in dogs. Santos FA; Pochapski MT; Martins MC; Zenóbio EG; Spolidoro LC; Marcantonio E Clin Implant Dent Relat Res; 2010 Mar; 12(1):18-25. PubMed ID: 18783409 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds. Bi L; Jung S; Day D; Neidig K; Dusevich V; Eick D; Bonewald L J Biomed Mater Res A; 2012 Dec; 100(12):3267-75. PubMed ID: 22733586 [TBL] [Abstract][Full Text] [Related]
39. Comparison of the osteoconductive properties of three particulate bone fillers in a rabbit model: allograft, calcium carbonate (Biocoral®) and S53P4 bioactive glass. Gunn JM; Rekola J; Hirvonen J; Aho AJ Acta Odontol Scand; 2013 Sep; 71(5):1238-42. PubMed ID: 23294163 [TBL] [Abstract][Full Text] [Related]